Quantum hacking on a free-space quantum key distribution system without measuring quantum signals

We hack a practical free-space quantum key distribution (QKD) system using active wavelength control attacks without measuring quantum signals. This method is a hacking method that uses a wavelength change according to Alice’s laser diodes’ internal temperature change caused by Eve’s external laser source, unlike the existing hack, which simply analyzes the initial characteristic difference between transmitter signal laser diodes. In this paper, beyond a feasibility test, the proposed QKD hacking method is verified with the complete QKD system. Furthermore, we also suggest a new quantum hacking scheme in which the quantum signal does not need to be measured during the hacking process. Hence, Eve does not require complex hardware such as single-photon detectors and sources. Using the proposed quantum hacking method, we confirm that Eve can acquire not only a complete quantum key but also basis information without revealing her presence.

[1]  Rong Wang,et al.  Improved security bound for the round-robin-differential-phase-shift quantum key distribution , 2018, Nature Communications.

[2]  Mu-Sheng Jiang,et al.  Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system , 2011, 1203.0739.

[3]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[4]  L. Zhang,et al.  Direct and full-scale experimental verifications towards ground–satellite quantum key distribution , 2012, 1210.7556.

[5]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.

[6]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[7]  Cesare Barbieri,et al.  Quantum communications at ESA: Towards a space experiment on the ISS , 2008 .

[8]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[9]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[10]  Giacomo Corrielli,et al.  Spatial Mode Side Channels in Free-Space QKD Implementations , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  G. Guo,et al.  Measurement-device-independent quantum key distribution robust against environmental disturbances , 2017 .

[12]  N. Gisin,et al.  Quantum key distribution over 67 km with a plug , 2002 .

[13]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[14]  Rupert Ursin,et al.  Space-QUEST: quantum physics and quantum communication in space , 2009, OPTO.

[15]  Richard J. Hughes,et al.  Practical free-space quantum key distribution over 10 km in daylight and at night , 2002, quant-ph/0206092.

[16]  Shuang Wang,et al.  Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme , 2017, 1707.00387.

[17]  N. Gisin,et al.  “Plug and play” systems for quantum cryptography , 1996, quant-ph/9611042.

[18]  Kyo Inoue,et al.  Plug & Play Quantum Key Distribution Using Modulation Sidebands for Shifting Frequency , 2005 .

[19]  A. R. Dixon,et al.  Gigahertz quantum key distribution with InGaAs avalanche photodiodes , 2008 .

[20]  M J García-Martínez,et al.  High-speed free-space quantum key distribution system for urban daylight applications. , 2013, Applied optics.

[21]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[22]  Byung Kwon Park,et al.  Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme , 2016 .

[23]  Christian Schneider,et al.  Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—a proof of principle experiment , 2014 .

[24]  Nicolas Gisin,et al.  Fast and user-friendly quantum key distribution , 2000 .

[25]  J. Skaar,et al.  Effects of detector efficiency mismatch on security of quantum cryptosystems , 2005, quant-ph/0511032.

[26]  Wei Chen,et al.  2 GHz clock quantum key distribution over 260 km of standard telecom fiber. , 2012, Optics letters.

[27]  Fibirova Jana,et al.  Profit-Sharing – A Tool for Improving Productivity, Profitability and Competitiveness of Firms? , 2013 .

[28]  N. Gisin,et al.  Long-term performance of the SwissQuantum quantum key distribution network in a field environment , 2011, 1203.4940.

[29]  James F. Dynes,et al.  Avoiding the blinding attack in QKD , 2010 .

[30]  Shuang Wang,et al.  Practical gigahertz quantum key distribution robust against channel disturbance. , 2018, Optics letters.

[31]  Jian-Wei Pan,et al.  Source attack of decoy-state quantum key distribution using phase information , 2013, 1304.2541.

[32]  P. Townsend,et al.  Quantum key distribution over distances as long as 30 km. , 1995, Optics letters.

[33]  Feihu Xu,et al.  Experimental demonstration of phase-remapping attack in a practical quantum key distribution system , 2010, 1005.2376.

[34]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[35]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[36]  Yong-Su Kim,et al.  Free-space QKD system hacking by wavelength control using an external laser. , 2017, Optics express.

[37]  H. Weinfurter,et al.  Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors , 2011, 1101.5289.

[38]  N. Gisin,et al.  Automated 'plug & play' quantum key distribution , 1998, quant-ph/9812052.

[39]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[40]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[41]  Vadim Makarov,et al.  Erratum: Effects of detector efficiency mismatch on security of quantum cryptosystems [Phys. Rev. A74, 022313 (2006)] , 2008 .

[42]  P. Villoresi,et al.  Feasibility of satellite quantum key distribution , 2009, 0903.2160.

[43]  E. Diamanti,et al.  Preventing Calibration Attacks on the Local Oscillator in Continuous-Variable Quantum Key Distribution , 2013, 1304.7024.

[44]  R. Laflamme,et al.  A comprehensive design and performance analysis of low Earth orbit satellite quantum communication , 2012, 1211.2733.

[45]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[46]  Amir K. Khandani,et al.  Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations , 2015, 1512.05789.

[47]  Arnold Tunick,et al.  Review of representative free-space quantum communications experiments , 2010, Optical Engineering + Applications.

[48]  H. Weinfurter,et al.  Air-to-ground quantum communication , 2013, Nature Photonics.

[49]  Nicolas Gisin,et al.  Random Variation of Detector Efficiency: A Countermeasure Against Detector Blinding Attacks for Quantum Key Distribution , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[50]  Shuang Wang,et al.  Experimental demonstration of a quantum key distribution without signal disturbance monitoring , 2015, Nature Photonics.

[51]  Qiang Zhang,et al.  Integrating quantum key distribution with classical communications in backbone fiber network. , 2017, Optics express.

[52]  G. Guo,et al.  Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack , 2013, 1302.0090.