A Two-Tier Full-Information Item Factor Analysis Model with Applications

Motivated by Gibbons et al.’s (Appl. Psychol. Meas. 31:4–19, 2007) full-information maximum marginal likelihood item bifactor analysis for polytomous data, and Rijmen, Vansteelandt, and De Boeck’s (Psychometrika 73:167–182, 2008) work on constructing computationally efficient estimation algorithms for latent variable models, a two-tier item factor analysis model is developed in this research. The modeling framework subsumes standard multidimensional IRT models, bifactor IRT models, and testlet response theory models as special cases. Features of the model lead to a reduction in the dimensionality of the latent variable space, and consequently significant computational savings. An EM algorithm for full-information maximum marginal likelihood estimation is developed. Simulations and real data demonstrations confirm the accuracy and efficiency of the proposed methods. Three real data sets from a large-scale educational assessment, a longitudinal public health survey, and a scale development study measuring patient reported quality of life outcomes are analyzed as illustrations of the model’s broad range of applicability.

[1]  David J. Weiss,et al.  Using computerized adaptive testing to reduce the burden of mental health assessment. , 2008, Psychiatric services.

[2]  F. Baker,et al.  Item response theory : parameter estimation techniques , 1993 .

[3]  Li Cai A Metropolis-Hastings Robbins-Monro Algorithm for Maximum Likelihood Nonlinear Latent Structure Analysis with a Comprehensive Measurement Model , 2008 .

[4]  Irini Moustaki Factor analysis and latent structure of categorical and metric data , 2007 .

[5]  Li Cai,et al.  The Nominal Categories Item Response Model , 2010 .

[6]  Eric T. Bradlow,et al.  A Bayesian random effects model for testlets , 1999 .

[7]  Jeffrey R. Harring,et al.  Marginal Maximum Likelihood Estimation of a Latent Variable Model With Interaction , 2009 .

[8]  Albert Maydeu-Olivares,et al.  Limited- and Full-Information Estimation and Goodness-of-Fit Testing in 2n Contingency Tables , 2005 .

[9]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[10]  D. Thissen,et al.  Limited-information goodness-of-fit testing of item response theory models for sparse 2 tables. , 2006, The British journal of mathematical and statistical psychology.

[11]  A. Lehman,et al.  A Quality of Life Interview for the chronically mentally ill. , 1988 .

[12]  Kristopher J Preacher,et al.  Item factor analysis: current approaches and future directions. , 2007, Psychological methods.

[13]  David Thissen,et al.  On the relationship between the higher-order factor model and the hierarchical factor model , 1999 .

[14]  Donald Hedeker,et al.  Full-information item bi-factor analysis , 1992 .

[15]  Li Cai High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm , 2010 .

[16]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[17]  R. D. Bock,et al.  High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature , 2005 .

[18]  Cheryl D. Hill,et al.  Two models for longitudinal item response data , 2006 .

[19]  Frank Rijmen,et al.  Three Multidimensional Models for Testlet-Based Tests: Formal Relations and an Empirical Comparison. Research Report. ETS RR-09-37. , 2009 .

[20]  Frank B. Baker,et al.  Item Response Theory : Parameter Estimation Techniques, Second Edition , 2004 .

[21]  Daniel M. Bolt,et al.  A Comparison of Alternative Models for Testlets , 2006 .

[22]  Li Cai,et al.  A Cautionary Note on Using G2(dif) to Assess Relative Model Fit in Categorical Data Analysis , 2006, Multivariate behavioral research.

[23]  David Thissen,et al.  Construction of the Pediatric Asthma Impact Scale (PAIS) for the Patient-Reported Outcomes Measurement Information System (PROMIS) , 2010, The Journal of asthma : official journal of the Association for the Care of Asthma.

[24]  Shelby J. Haberman,et al.  Log-Linear Models and Frequency Tables with Small Expected Cell Counts , 1977 .

[25]  Donald Hedeker,et al.  Full-Information Item Bifactor Analysis of Graded Response Data , 2007 .

[26]  E. Muraki,et al.  Full-Information Item Factor Analysis , 1988 .

[27]  Frank Rijmen,et al.  Efficient Full Information Maximum Likelihood Estimation for Multidimensional IRT Models. Research Report. ETS RR-09-03. , 2009 .

[28]  D. Thissen,et al.  Local Dependence Indexes for Item Pairs Using Item Response Theory , 1997 .

[29]  P. Boeck,et al.  Explanatory item response models : a generalized linear and nonlinear approach , 2004 .

[30]  Albert Maydeu-Olivares,et al.  Random intercept item factor analysis. , 2006, Psychological methods.

[31]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[32]  Steven P. Reise,et al.  The role of the bifactor model in resolving dimensionality issues in health outcomes measures , 2007, Quality of Life Research.

[33]  Frank Rijmen,et al.  Formal Relations and an Empirical Comparison among the Bi‐Factor, the Testlet, and a Second‐Order Multidimensional IRT Model , 2010 .

[34]  Robert Cudeck,et al.  Factor analysis at 100 : historical developments and future directions , 2007 .

[35]  David J Weiss,et al.  Psychometric Evaluation and Calibration of Health-Related Quality of Life Item Banks: Plans for the Patient-Reported Outcomes Measurement Information System (PROMIS) , 2007, Medical care.

[36]  Li Cai,et al.  SEM of another flavour: two new applications of the supplemented EM algorithm. , 2008, The British journal of mathematical and statistical psychology.

[37]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[38]  Robert W. Faris,et al.  The social ecology of adolescent alcohol misuse. , 2008, Child development.

[39]  Albert Maydeu-Olivares,et al.  Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables , 2005 .

[40]  David Thissen,et al.  Using item response theory to disentangle constructs at different levels of generality. , 2010 .

[41]  Raymond J. Adams,et al.  PISA 2000 technical report , 2002 .

[42]  William Stout,et al.  A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .

[43]  Cees A. W. Glas,et al.  Application of Multidimensional Item Response Theory Models to Longitudinal Data , 2006 .

[44]  Richard J. Patz,et al.  Making the Most of What We Have: A Practical Application of Multidimensional Item Response Theory in Test Scoring , 2005 .

[45]  David Thissen,et al.  Trace Lines for Testlets: A Use of Multiple-Categorical-Response Models. , 1989 .

[46]  E. Muraki A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .

[47]  Leonard S. Cahen,et al.  Educational Testing Service , 1970 .

[48]  Michael C. Edwards,et al.  A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis , 2010 .

[49]  David Thissen,et al.  Marginal maximum likelihood estimation for the one-parameter logistic model , 1982 .

[50]  Li Cai,et al.  Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis , 2010 .

[51]  Eric T. Bradlow,et al.  Testlet Response Theory and Its Applications , 2007 .

[52]  Kenneth A. Bollen,et al.  Structural Equations with Latent Variables , 1989 .

[53]  William Meredith,et al.  Exploratory longitudinal factor analysis in multiple populations , 1989 .

[54]  D. Thissen,et al.  Likelihood-Based Item-Fit Indices for Dichotomous Item Response Theory Models , 2000 .

[55]  S. Embretson Measuring psychological constructs: Advances in model-based approaches. , 2010 .

[56]  Eric T. Bradlow,et al.  MML and EAP Estimation in Testlet-based Adaptive Testing , 2000 .

[57]  Francis Tuerlinckx,et al.  Copula Functions for Residual Dependency , 2007 .

[58]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[59]  David Thissen,et al.  Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities , 2006, Psychometrika.

[60]  Paul De Boeck,et al.  Latent Class Models for Diary Method Data: Parameter Estimation by Local Computations , 2007, Psychometrika.

[61]  Cornelis A.W. Glas,et al.  Computerized adaptive testing : theory and practice , 2000 .

[62]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters , 1982 .

[63]  David J. Bartholomew,et al.  The Goodness of Fit of Latent Trait Models in Attitude Measurement , 1999 .

[64]  James E. Carlson,et al.  Full-Information Factor Analysis for Polytomous Item Responses , 1995 .