Error compensation on precision machine tool servo control system based on digital concave filter

It is concluded from the results of testing the frequency characteristics of the sub-micron precision machine tool servo control system, that the existence of several oscillating modalities is the main factor that affects the performance of the control system. To compensate for this effect, several concave filters are utilized in the system to improve the control accuracy. The feasibility of compensating for several oscillating modalities with a single concave filter is also studied. By applying a modified Butterworth concave filter to the practical system, the maximum stable state output error remains under + 10 nm in the closed-loop positioning system.