Integrated Digital and Analog Circuit Blocks in a Scalable Silicon Carbide CMOS Technology

The wide bandgap of silicon carbide (SiC) has attracted a large interest over the past years in many research fields, such as power electronics, high operation temperature circuits, harsh environmental sensing, and more. To facilitate research on complex integrated SiC circuits, ensure reproducibility, and cut down cost, the availability of a low-voltage SiC technology for integrated circuits is of paramount importance. Here, we report on a scalable and open state-of-the-art SiC CMOS technology that addresses this need. An overview of technology parameters, including MOSFET threshold voltage, subthreshold slope, slope factor, and process transconductance, is reported. Conventional integrated digital and analog circuits, ranging from inverters to a 2-bit analog-to-digital converter, are reported. First yield predictions for both analog and digital circuits show great potential for increasing the amount of integrated devices in future applications.

[1]  C. Rodrigues,et al.  Ultra-Low-Voltage Inverter-Based Operational Transconductance Amplifiers with Voltage Gain Enhancement by Improved Composite Transistors , 2020, Electronics.

[2]  B. Morana,et al.  Surface-Micromachined Silicon Carbide Pirani Gauges for Harsh Environments , 2020, IEEE Sensors Journal.

[3]  Luís Henrique Rodovalho Push–pull based operational transconductor amplifier topologies for ultra low voltage supplies , 2020 .

[4]  A. Bauer,et al.  A 4H-SiC UV Phototransistor With Excellent Optical Gain Based on Controlled Potential Barrier , 2020, IEEE Transactions on Electron Devices.

[5]  Peter Enoksson,et al.  Maintaining Transparency of a Heated MEMS Membrane for Enabling Long-Term Optical Measurements on Soot-Containing Exhaust Gas , 2019, Sensors.

[6]  A. Bauer,et al.  Ohmic Contact Mechanism for Ni/C-Faced 4H-n-SiC Substrate , 2019, Journal of Nanomaterials.

[7]  John R. Fraley,et al.  Characterization of a Silicon Carbide BCD Process for 300°C Circuits , 2019, 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA).

[8]  L. Frey,et al.  Improving 5V Digital 4H-SiC CMOS ICs for Operating at 400°C Using PMOS Channel Implantation , 2019, Materials Science Forum.

[9]  Affan Abbasi,et al.  High Temperature Memory Design, Implementation, and Characterization in 1μm SiC CMOS Technology , 2019, Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT).

[10]  A. Bauer,et al.  Feasibility of 4H-SiC p-i-n Diode for Sensitive Temperature Measurements Between 20.5 K and 802 K , 2019, IEEE Sensors Journal.

[11]  C. Zetterling,et al.  500 °C, High Current Linear Voltage Regulator in 4H-SiC BJT Technology , 2018, IEEE Electron Device Letters.

[12]  Ashfaqur Rahman,et al.  A SiC CMOS Digitally Controlled PWM Generator for High-Temperature Applications , 2017, IEEE Transactions on Industrial Electronics.

[13]  Jia Di,et al.  High Temperature Data Converters in Silicon Carbide CMOS , 2017, IEEE Transactions on Electron Devices.

[14]  L. Lanni,et al.  Bipolar integrated circuits in SiC for extreme environment operation , 2017 .

[15]  Paddy French,et al.  Precision in harsh environments , 2016, Microsystems & Nanoengineering.

[16]  A. Burenkov,et al.  Optimization of 4H-SiC Photodiodes as Selective UV Sensors , 2016, 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM).

[17]  L. Lanni,et al.  A 500 °C 8-b Digital-to-Analog Converter in Silicon Carbide Bipolar Technology , 2016, IEEE Transactions on Electron Devices.

[18]  Affan Abbasi,et al.  High-Temperature SiC CMOS Comparator and op-amp for Protection Circuits in Voltage Regulators and Switch-Mode Converters , 2016, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[19]  Braham Ferreira,et al.  International technology roadmap for wide band-gap power semiconductor ITRW , 2016, 2016 International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM).

[20]  Alan Mantooth,et al.  High-Temperature Voltage and Current References in Silicon Carbide CMOS , 2016, IEEE Transactions on Electron Devices.

[21]  L. Lanni,et al.  Silicon Carbide Fully Differential Amplifier Characterized Up to 500 °C , 2016, IEEE Transactions on Electron Devices.

[22]  A. M. Francis,et al.  An integrated SiC CMOS gate driver , 2016, 2016 IEEE Applied Power Electronics Conference and Exposition (APEC).

[23]  Jia Di,et al.  Complex High-Temperature CMOS Silicon Carbide Digital Circuit Designs , 2016, IEEE Transactions on Device and Materials Reliability.

[24]  A. M. Francis,et al.  A high temperature comparator in CMOS SiC , 2015, 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA).

[25]  A. M. Francis,et al.  A SiC 8 Bit DAC at 400°C , 2015, 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA).

[26]  Carl-Mikael Zetterling,et al.  ECL-Based SiC Logic Circuits for Extreme Temperatures , 2015 .

[27]  A. Horsfall,et al.  High Temperature CMOS Circuits on Silicon Carbide , 2015 .

[28]  Liang Yin,et al.  Silicon Carbide Integrated Circuits With Stable Operation Over a Wide Temperature Range , 2014, IEEE Electron Device Letters.

[29]  J. Cooper,et al.  Physical Properties of Silicon Carbide , 2014 .

[30]  F. Giannazzo,et al.  Challenges for energy efficient wide band gap semiconductor power devices , 2014 .

[31]  Saul Rodriguez,et al.  A Monolithic, 500 °C Operational Amplifier in 4H-SiC Bipolar Technology , 2014, IEEE Electron Device Letters.

[32]  L. Lanni,et al.  Lateral p-n-p Transistors and Complementary SiC Bipolar Technology , 2014, IEEE Electron Device Letters.

[33]  Roya Maboudian,et al.  Advances in silicon carbide science and technology at the micro- and nanoscales , 2013 .

[34]  Stephen J. Finney,et al.  High Temperature Digital and Analogue Integrated Circuits in Silicon Carbide , 2013 .

[35]  Carl-Mikael Zetterling,et al.  Bipolar Integrated OR-NOR Gate in 4H-SiC , 2012 .

[36]  Robert G. Azevedo,et al.  Silicon Carbide Microsystems for Harsh Environments , 2011 .

[37]  Vinayak Tilak,et al.  300°C Silicon Carbide Integrated Circuits , 2011 .

[38]  J. Suehle,et al.  Reliability Issues of SiC MOSFETs: A Technology for High-Temperature Environments , 2010, IEEE Transactions on Device and Materials Reliability.

[39]  Steven L. Garverick,et al.  Fully-monolithic, 600°C differential amplifiers in 6H-SiC JFET IC technology , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[40]  D.G. Senesky,et al.  Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review , 2009, IEEE Sensors Journal.

[41]  H. Zirath,et al.  An SiC MESFET-Based MMIC Process , 2006, IEEE Transactions on Microwave Theory and Techniques.

[42]  A. Hefner,et al.  Reliability of SiC MOS devices , 2004 .

[43]  A. Mantooth,et al.  Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[44]  Juin J. Liou,et al.  A review of recent MOSFET threshold voltage extraction methods , 2002, Microelectron. Reliab..

[45]  Pasqualina M. Sarro,et al.  Silicon carbide as a new MEMS technology , 2000 .

[46]  C. Codreanu,et al.  Comparison of 3C–SiC, 6H–SiC and 4H–SiC MESFETs performances , 2000 .

[47]  M. Mehregany,et al.  Silicon carbide MEMS for harsh environments , 1998, Proc. IEEE.

[48]  J. J. A. Cooper,et al.  Advances in SiC MOS Technology , 1997 .

[49]  Glenn Beheim,et al.  Processing and Characterization of Thousand-Hour 500 °C Durable 4H-SiC JFET Integrated Circuits , 2016 .

[50]  W. Martienssen,et al.  Springer handbook of condensed matter and materials data , 2005 .

[51]  Thomas A. DeMassa,et al.  Digital Integrated Circuits , 1985, 1985 IEEE GaAs IC Symposium Technical Digest.