Counting Integer Flows in Networks

Abstract This paper discusses analytic algorithms and software for the enumeration of all integer flows inside a network. Concrete applications abound in graph theory, representation theory, and statistics. Our methods are based on the study of rational functions with poles on arrangements of hyperplanes; they surpass traditional exhaustive enumeration and can even yield formulas when the input data contains some parameters. We also discuss the calculation of chambers in detail because it is a necessary subroutine.

[1]  Anatol N. Kirillov,et al.  Ubiquity of Kostka polynomials , 1999 .

[2]  Richard P. Stanley,et al.  A Polytope Related to Empirical Distributions, Plane Trees, Parking Functions, and the Associahedron , 2002, Discret. Comput. Geom..

[3]  Jesús A. De Loera,et al.  The polytope of all triangulations of a point configuration , 1996, Documenta Mathematica.

[4]  Bernd Sturmfels,et al.  On Vector Partition Functions , 1995, J. Comb. Theory, Ser. A.

[5]  Jesús A. De Loera,et al.  Algebraic unimodular counting , 2001, Math. Program..

[6]  Katta G. Murty A fundamental problem in linear inequalities with applications to the travelling salesman problem , 1972, Math. Program..

[7]  Michele Vergne,et al.  Residue formulae for vector partitions and Euler-MacLaurin sums , 2003, Adv. Appl. Math..

[8]  L. C. Jeffrey,et al.  Localization for nonabelian group actions , 1993 .

[9]  G. Ziegler Lectures on Polytopes , 1994 .

[10]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[11]  Matthias Beck,et al.  The Ehrhart Polynomial of the Birkhoff Polytope , 2003, Discret. Comput. Geom..

[12]  R. Stanley Combinatorics and commutative algebra , 1983 .

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  M. Brion,et al.  Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .

[15]  Michele Vergne,et al.  Residues formulae for volumes and Ehrhart polynomials of convex polytopes. , 2001, math/0103097.

[16]  P. Diaconis,et al.  Rectangular Arrays with Fixed Margins , 1995 .

[17]  Jeffrey R. Schmidt,et al.  The Kostant partition function for simple Lie algebras , 1984 .

[18]  B. Sturmfels Oriented Matroids , 1993 .

[19]  P. Flajolet On approximate counting , 1982 .

[20]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[21]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[22]  Michele Vergne,et al.  Arrangement of hyperplanes. I. Rational functions and Jeffrey-Kirwan residue , 1999 .

[23]  Bernd Sturmfels,et al.  Duality and Minors of Secondary Polyhedra , 1993, J. Comb. Theory, Ser. B.

[24]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[25]  F. Jaeger,et al.  Flows and generalized coloring theorems in graphs , 1979, J. Comb. Theory, Ser. B.

[26]  Jörg Rambau,et al.  TOPCOM: Triangulations of Point Configurations and Oriented Matroids , 2002 .

[27]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[28]  Jean B. Lasserre,et al.  Solving the knapsack problem via Z-transform , 2002, Oper. Res. Lett..

[29]  Doron Zeilberger Proof of a Conjecture of Chan, Robbins, and Yuen , 1998 .

[30]  P. Diaconis,et al.  Testing for independence in a two-way table , 1985 .