Estimation/Imputation Strategies for Missing Data in Survival Analysis

We consider the problem of estimation from right-censored data, when the censoring indicator is possibly missing. We compare different estimatio/imputation strategies for recovering nuisance functional parameters. More precisely, we propose either a parametric strategy following a logistic model standard or a pure nonparametric regression strategy. We provide theoretical properties and numerical comparisons for these procedures.

[1]  Junshan Shen,et al.  Estimation and confidence bands of a conditional survival function with censoring indicators missing at random , 2008 .

[2]  Sundarraman Subramanian,et al.  Asymptotically efficient estimation of a survival function in the missing censoring indicator model , 2004 .

[3]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[4]  Wei Liu,et al.  Probability density estimation for survival data with censoring indicators missing at random , 2009, J. Multivar. Anal..

[5]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[6]  Sundarraman Subramanian,et al.  Multiple imputations and the missing censoring indicator model , 2011, J. Multivar. Anal..

[7]  Roger A. Sugden,et al.  Multiple Imputation for Nonresponse in Surveys , 1988 .

[8]  F. Comte,et al.  Adaptive estimation of the conditional intensity of marker-dependent counting processes , 2008, 0810.4263.

[9]  Sundarraman Subramanian,et al.  The multiple imputations based Kaplan-Meier estimator , 2009 .

[10]  Ian W. McKeague,et al.  Efficient Estimation from Right-Censored Data When Failure Indicators are Missing at Random , 1998 .

[11]  Sundarraman Subramanian Survival analysis for the missing censoring indicator model using kernel density estimation techniques. , 2006, Statistical methodology.

[12]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[13]  Qihua Wang,et al.  ASYMPTOTICALLY EFFICIENT PRODUCT-LIMIT ESTIMATORS WITH CENSORING INDICATORS MISSING AT RANDOM , 2008 .

[14]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[15]  Agathe Guilloux,et al.  Nonparametric estimation for survival data with censoring indicators missing at random , 2013 .

[16]  Xian Zhou,et al.  Addititive hazards regression with missing censoring information , 2003 .

[17]  F. Comte,et al.  PENALIZED CONTRAST ESTIMATION OF DENSITY AND HAZARD RATE WITH CENSORED DATA. , 2005 .