Charge-based re-programmable logic device with built-in memory: New era in molecular electronics

Abstract We put forward a new proposal of designing charge-based logic devices considering a cyclic molecule that can be programmed and re-programmed for different functional logical operations and suitably engineered for data storage as well. The key idea is based on the appearance of bias induced circular current under asymmetric molecule-to-electrode interface configuration which does not dissipate even when the bias is off. Our results are valid for a broad range of parameter values, and provide a boost in the field of storage mechanism, reconfigurable computing, charge-based logic functions and other nano-scale applications.

[1]  Dolan,et al.  Magnetization of mesoscopic copper rings: Evidence for persistent currents. , 1990, Physical review letters.

[2]  Memory with a spin. , 2015, Nature nanotechnology.

[3]  Juyoung Yoon,et al.  Fluorescent molecular logic gates using microfluidic devices. , 2008, Angewandte Chemie.

[4]  L. J. Sham,et al.  Spin-based logic in semiconductors for reconfigurable large-scale circuits , 2007, Nature.

[5]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[6]  D. Lidar,et al.  Exponentially localized magnetic fields for single-spin quantum logic gates , 2003, cond-mat/0310352.

[7]  S. Maiti,et al.  Modulation of circular current and associated magnetic field in a molecular junction: A new approach , 2016, Scientific Reports.

[8]  A. Nitzan,et al.  Magnetic fields effects on the electronic conduction properties of molecular ring structures , 2011, 1109.0619.

[9]  M. Tsukada,et al.  Current-controlled magnetism in T-shape tape-porphyrin molecular bridges , 2003 .

[10]  X. Liang,et al.  Fano resonance and persistent current of a quantum ring , 2004 .

[11]  R. Baer,et al.  Phase coherent electronics: a molecular switch based on quantum interference. , 2002, Journal of the American Chemical Society.

[12]  K. H. Ploog,et al.  Programmable computing with a single magnetoresistive element , 2003, Nature.

[13]  Jie Chao,et al.  Molecular logic gates on DNA origami nanostructures for microRNA diagnostics. , 2014, Analytical chemistry.

[14]  Shih,et al.  Persistent currents in small one-dimensional metal rings. , 1988, Physical review. B, Condensed matter.

[15]  S. Maiti,et al.  Logical operations using phenyl ring , 2018, 1809.06549.

[16]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[17]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[18]  F. Raymo Digital processing and communication with molecular switches , 2002 .

[19]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[20]  S. Maiti Externally controlled local magnetic field in a conducting mesoscopic ring coupled to a quantum wire , 2014, 1407.4926.

[21]  G. Seifert,et al.  The Magnetic Shielding Function of Molecules and Pi‐Electron Delocalization , 2006 .

[22]  S. Maiti,et al.  Unconventional low-field magnetic response of a diffusive ring with spin–orbit coupling , 2016, 1604.00165.

[23]  S. Maiti Determination of Rashba and Dresselhaus spin-orbit fields , 2011, 1104.4059.

[24]  S. Maiti Conformation-dependent electron transport through a biphenyl molecule: circular current and related issues , 2013, 1302.3944.

[25]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[26]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.

[27]  D. Neuhauser Anti-coherence based molecular electronics: XOR-gate response , 2002 .

[28]  S. Maiti,et al.  Magneto-transport in a mesoscopic ring with Rashba and Dresselhaus spin-orbit interactions , 2011, 1103.0436.

[29]  Günter Reiss,et al.  Nonvolatile field programmable spin-logic for reconfigurable computing , 2002 .