Rapid aberration measurement with pixelated detectors

Aberration‐corrected microscopy in a scanning transmission electron microscope requires the fast and accurate measurement of lens aberrations to align or ‘tune’ the corrector. Here, we demonstrate a method to measure aberrations based on acquiring a 4D data set on a pixelated detector. Our method is compared to existing procedures and the choice of experimental parameters is examined. The accuracy is similar to existing methods, but in principle this procedure can be performed in a few seconds and extended to arbitrary order. This method allows rapid measurement of aberrations and represents a step towards more automated electron microscopy.

[1]  Ondrej L. Krivanek,et al.  Towards sub-Å electron beams , 1999 .

[2]  M. Knörnschild,et al.  Corrigendum: Bats host major mammalian paramyxoviruses , 2014, Nature Communications.

[3]  Josef Zweck,et al.  Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction , 2014, Nature Communications.

[4]  John M. Cowley,et al.  Reconstruction from in-line electron holograms by digital processing , 1986 .

[5]  Walter Hoppe,et al.  Trace structure analysis, ptychography, phase tomography , 1982 .

[6]  J. M. Cowley,et al.  Calibration of the operating parameters for an HB5 stem instrument , 1986 .

[7]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[8]  Andrew R. Lupini,et al.  The Electron Ronchigram , 2011 .

[9]  O. Scherzer Spharische und chromatische Korrektur von Elektronen-Linsen , 1947 .

[10]  John M. Rodenburg,et al.  Beyond the conventional information limit: the relevant coherence function , 1994 .

[11]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[12]  J. Rodenburg,et al.  Optical ptychography: a practical implementation with useful resolution. , 2010, Optics letters.

[13]  M. Sarahan,et al.  Recording and Using 4D-STEM Datasets in Materials Science , 2014 .

[14]  Lewys Jones,et al.  Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution. , 2015, Ultramicroscopy.

[15]  P. Nellist,et al.  Efficient phase contrast imaging in STEM using a pixelated detector. Part II: optimisation of imaging conditions. , 2015, Ultramicroscopy.

[16]  D. Schroder,et al.  Panchromatic and spectral characterisation of Cu contaminated semi-insulating GaAs , 1992 .

[17]  Naoya Shibata,et al.  Differential phase-contrast microscopy at atomic resolution , 2012, Nature Physics.

[18]  A. Kirkland,et al.  “Indirect” High-Resolution Transmission Electron Microscopy: Aberration Measurement and Wavefunction Reconstruction , 2004, Microscopy and Microanalysis.

[19]  Performance of the DDD as a Direct Electron Detector for Low Dose Electron Microscopy , 2010 .

[20]  H. Sawada,et al.  Measurement method of aberration from Ronchigram by autocorrelation function. , 2008, Ultramicroscopy.

[21]  J. M. Cowley Adjustment of a STEM instrument by use of shadow images , 1979 .

[22]  O. Krivanek,et al.  Dedicated STEM for 200 to 40 keV operation , 2011 .

[23]  P D Nellist,et al.  Aberration measurement using the Ronchigram contrast transfer function. , 2010, Ultramicroscopy.

[24]  Juri Barthel,et al.  Aberration measurement in HRTEM: implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns. , 2010, Ultramicroscopy.

[25]  J. Zach,et al.  Aberration correction and its automatic control in scanning electron microscopes , 2005 .