STEREOCHEMISTRY AND THE MECHANISM OF ENZYMATIC REACTIONS

[1]  I. Wilson,et al.  The enzymic hydrolysis and synthesis of acetylcholine. , 2006, Advances in enzymology and related subjects of biochemistry.

[2]  D. Metzler,et al.  Catalytic racemization of amino acids by pyridoxal and metal salts. , 1952, The Journal of biological chemistry.

[3]  M. Doudoroff,et al.  Phosphorolysis of maltose by enzyme preparations from Neisseria meningitidis. , 1952, The Journal of biological chemistry.

[4]  D. Metzler,et al.  Deamination of serine. I. Catalytic deamination of serine and cysteine by pyridoxal and metal salts. , 1952, The Journal of biological chemistry.

[5]  D. Koshland,et al.  MECHANISM of action of alkaline phosphatase. , 1952, Archives of biochemistry and biophysics.

[6]  D. Koshland Effect of Catalysts on the Hydrolysis of Acetyl Phosphate. Nucleophilic Displacement Mechanisms in Enzymatic Reactions1 , 1952 .

[7]  F. J. Reithel,et al.  The Hydrolysis of Glucose-4-phosphate1 , 1952 .

[8]  Y. J. Topper,et al.  The biological transformation of galactose into glucose. , 1951, The Journal of biological chemistry.

[9]  F. Lynen,et al.  Zum biologischen Abbau der Essigsäure VI1). “Aktivierte Essigsäure”, ihre Isolierung aus Hefe und ihre chemische Natur2) , 1951 .

[10]  M. Wolfrom,et al.  4-α-Isomaltopyranosyl-D-glucose , 1951 .

[11]  W. Wood,et al.  D-Alanine formation; a racemase in Streptococcus faecalis. , 1951, The Journal of biological chemistry.

[12]  D. French Structure of Pan's crystalline trisaccharide. , 1951, Science.

[13]  S. Roseman,et al.  Reductive Cleavage of Benzyl Glycosides for Relating Anomeric Configurations. Preparation of Some New Benzyl Pentosides1 , 1951 .

[14]  F. J. Reithel,et al.  The Synthesis of Derivatives of Glucose-4-phosphoric Acid , 1949 .

[15]  M. Cohn Mechanisms of cleavage of glucose-1-phosphate. , 1949, The Journal of biological chemistry.

[16]  R. Bentley The Mechanism of Hydrolysis of Acetyl Dihydrogen Phosphate , 1949 .

[17]  S. Hestrin Action pattern of crystalline muscle phosphorylase. , 1949, The Biological bulletin.

[18]  G. Hilbert,et al.  Isolation of 6-[α-D-Glucopyranosyl]-D-glucose (Isomaltose) from Enzymic Hydrolyzates of Starch2 , 1949 .

[19]  Ogston Ag Interpretation of experiments on metabolic processes, using isotopic tracer elements. , 1948 .

[20]  C. G. Swain,et al.  Concerted Displacement Reactions. II. Termolecular Displacement Reactions of Methyl Halides in Benzene Solution1 , 1948 .

[21]  G. T. Cori,et al.  On the mechanism of action of muscle and potato phosphorylase. , 1948, The Journal of biological chemistry.

[22]  M. Doudoroff,et al.  α-L-Glucose-1-phosphate , 1948 .

[23]  C. G. Swain Kinetic Evidence for a Termolecular Mechanism in Displacement Reactions of Triphenylmethyl Halides in Benzene Solution , 1948 .

[24]  P. Gürtler,et al.  Structure of Amylopectin , 1947, Nature.

[25]  M. Doudoroff,et al.  Studies with bacterial sucrose phosphorylase; the mechanism of action of sucrose phosphorylase as a glucose-transferring enzyme (transglucosidase). , 1947, The Journal of biological chemistry.

[26]  H. Kalckar Differential spectrophotometry of purine compounds by means of specific enzymes; studies of the enzymes of purine metabolism. , 1947, The Journal of biological chemistry.

[27]  Kalckar Hm,et al.  Differential spectrophotometry of purine compounds by means of specific enzymes; studies of the enzymes of purine metabolism. , 1947 .

[28]  E. Hehre,et al.  Bacterial synthesis of an amylopectin-like polysaccharide from sucrose. , 1946, The Journal of biological chemistry.

[29]  Meagher Wr,et al.  Synthesis of maltose-l-phosphate and d-xylose-l-phosphate. , 1946 .

[30]  D. Stetten,et al.  Studies in carbohydrate metabolism; the origin of the stable hydrogen in glycogen formed from various precursors. , 1946, The Journal of biological chemistry.

[31]  G. T. Cori,et al.  CONSTITUTION OF THE POLYSACCHARIDE SYNTHESIZED BY THE ACTION OF CRYSTALLINE MUSCLE PHOSPHORYLASE , 1943 .

[32]  M. Wolfrom,et al.  Application of the Mercaptalation Assay to Synthetic Starch1 , 1943 .

[33]  H. Isbell,et al.  Sugar acetates, acetylglycosyl halides and orthoacetates in relation to the Walden inversion , 1941 .

[34]  H. A. Barker,et al.  THE STRUCTURE OF DEXTRAN SYNTHESIZED FROM SUCROSE BY BETACOCCUS ARABINOSACEUS, ORLA-JENSEN , 1940 .

[35]  C. Cori,et al.  THE SYNTHESIS OF A POLYSACCHARIDE FROM GLUCOSE-1-PHOSPHATE IN MUSCLE EXTRACT. , 1939, Science.

[36]  M. Hunter,et al.  THE STRUCTURE OF DEXTRAN SYNTHESIZED BY LEUCONOSTOC DEXTRANICUS , 1938 .

[37]  B. Helferich,et al.  Die p‐Toluolsulfo‐ester des Vanillin‐β‐d‐glucosids und ihre Spaltbarkeit durch Süßmandel‐emulsin. Emulsin, XXVIII , 1937 .

[38]  E. Hughes,et al.  Reaction Kinetics and the Walden Inversion , 1936, Nature.

[39]  K. Freudenberg,et al.  Über den Abbau der Stärke mit Acetylbromid , 1936 .

[40]  K. Freudenberg,et al.  Hydrolyse und Acetolyse der Stärke und der Schardinger‐Dextrine , 1936 .

[41]  R. H. Hopkins,et al.  The mechanism of degradation of starch by amylases: Mutarotation of fission products. , 1936, The Biochemical journal.

[42]  H. Mark,et al.  Ein Beitrag zur Konstitution der Stärke , 1929 .

[43]  W. Klein,et al.  Zur Spezifität der α-Glucosidase aus Hefe , 1926 .

[44]  M. Bergmann,et al.  Über die ungesättigten Reduktionsprodukte der Zuckerarten und ihre Umwandlungen, V.: Über 2‐Desoxy‐glucose (Glucodesose) (II.) , 1922 .

[45]  C. Hudson THE INVERSION OF CANE SUGAR BY INVERTASE. VI. A THEORY OF THE INFLUENCE OF ACIDS AND ALKALIS ON THE ACTIVITY OF INVERTASE. , 1910 .

[46]  C. Hudson THE INVERSION OF CANE SUGAR BY INVERTASE, II.1 , 1908 .

[47]  E. Fischer Ueber den Einfluss der Konfiguration auf die Wirkung der Enzyme III , 1895 .

[48]  E. Fischer Einfluss der Configuration auf die Wirkung der Enzyme , 1894 .

[49]  H. Kalckar,et al.  Trans-N-glycosidase studied with radioactive adenine. , 1952, The Biochemical journal.

[50]  E. Hughes Reactions of halides in solution , 1951 .

[51]  E. Hehre Synthesis of a polysaccharide of the starch-glycogen class from sucrose by a cell free, bacterial enzyme system. , 1949, The Journal of biological chemistry.

[52]  Hehre Ej Synthesis of a polysaccharide of the starch-glycogen class from sucrose by a cell free, bacterial enzyme system. , 1949 .

[53]  A. Ogston Interpretation of Experiments on Metabolic processes, using Isotopic Tracer Elements , 1948, Nature.

[54]  A. R. Todd,et al.  185. Experiments on the synthesis of purine nucleosides. Part XIX. A synthesis of adenosine , 1948 .

[55]  A. R. Todd,et al.  Experiments on the synthesis of purine nucleosides; the configuration at the glycosidic centre in natural and synthetic pyrimidine and purine nucleosides. , 1946, Journal of the Chemical Society.

[56]  F. Bates Polarimetry, saccharimetry and the sugars, , 1942 .

[57]  F. Bates Circular of the Bureau of Standards no. 440:: polarimetry, saccharimetry and the sugars , 1942 .

[58]  D. Pletcher,et al.  The β-Form of the Cori Ester (d-Glucopyranose 1-Phosphate) , 1942 .

[59]  W. A. WATERS,et al.  Physical Organic Chemistry: , 1941, Nature.

[60]  P. Bernfeld,et al.  Recherches sur l'amidon II. Sur la nonhomogénéité de l'amidon , 1940 .

[61]  M. Stacey,et al.  132. Polysaccharides. Part XXX. The polysaccharide produced from sucrose by Betabacterium vermiformé(Ward–Mayer) , 1939 .

[62]  S. Peat,et al.  131. Polysaccharides. Part XXIX. Constitution of the dextran produced from sucrose by Leuconostoc dextranicum(Betacoccus Arabinosaceous Haemolyticus) , 1939 .

[63]  A. D. Scott,et al.  257. Reaction kinetics and the Walden inversion. Part VI. Relation of steric orientation to mechanism in substitutions involving halogen atoms and simple or substituted hydroxyl groups , 1937 .

[64]  R. H. Hopkins,et al.  The mechanism of degradation of starch by amylases: The action of malt amylase on alpha-amylodextrin. , 1936, The Biochemical journal.

[65]  M. Samec Über die Wirkung von β-Amylase auf einige Stärkesubstanzen. (4. Mitteilung über enzymatische Amylolyse in der von M. Samec und E. Waldschmidt-Leitz begonnenen Untersuchungsreihe.) Nach Versuchen von R. Modic , 1935 .

[66]  W. Haworth,et al.  CLXXVIII.—Polysaccharides. Part VIII. Evidence of continuous chains of α-glucopyranose units in starch and glycogen , 1931 .

[67]  A. Gottschalk Gärungs- und Phosphorylierungversuche an Zuckeranhydriden. , 1927 .

[68]  R. Kuhn Der Wirkungsmechanismus der Amylasen. ein Beitrag zum Konfigurationsproblem der Stärke , 1925 .

[69]  A. R. Ling,et al.  XCII.—Studies on starch. Part II. The constitution of polymerised amylose, amylopectin, and their derivatives , 2022 .

[70]  C. Hudson THE SIGNIFICANCE OF CERTAIN NUMERICAL RELATIONS IN THE SUGAR GROUP.2 , 1909 .

[71]  E. F. Armstrong CXXIV.—Studies on enzyme action. 1. The correlation of the stereoisomeric α- and β-glucosides with the corresponding glucoses , 1903 .

[72]  C. O'Sullivan,et al.  LX.—Invertase: a contribution to the history of an enzyme or unorganised ferment , 1890 .