The local Donaldson–Thomas theory of curves

Let X be a nonsingular projective variety of dimension 3 over C . Gromov–Witten theory is defined by integration over the moduli space of stable maps to X , and Donaldson–Thomas theory is defined by integration over the moduli space of ideal sheaves of X (see Donaldson–Thomas [5], Maulik et al [24; 25] and Thomas [34]). If X is quasi-projective, the Gromov–Witten and Donaldson–Thomas theories may not be well-defined. However, if X is the total space of a rank 2 bundle over a nonsingular projective curve, N ! C; local Gromov–Witten and Donaldson–Thomas theories are defined via equivariant residues (see Bryan–Pandharipande [4] and Maulik et al [24]). The Gromov–Witten and Donaldson–Thomas theories of X relative to a nonsingular surface S X are defined via moduli spaces of maps and sheaves with boundary conditions along S . See Eliashberg–Givental–Hofer [6], Ionel–Parker [12], Li–Ruan [16], Li [17; 18] and Maulik et al [25] for various treatments of the subject.

[1]  A. Okounkov,et al.  Gromov–Witten theory and Donaldson–Thomas theory, II , 2004, Compositio Mathematica.

[2]  R. Pandharipande,et al.  Gromov–Witten theory and Donaldson–Thomas theory, I , 2003, Compositio Mathematica.

[3]  Amin Gholampour,et al.  Evidence for the Gromov-Witten/Donaldson-Thomas correspondence , 2005, math/0510006.

[4]  J. Bryan,et al.  Curves in Calabi-Yau threefolds and topological quantum field theory , 2005 .

[5]  R. Pandharipande,et al.  A topological view of Gromov-Witten theory , 2004, math/0412503.

[6]  A. Okounkov,et al.  Quantum cohomology of the Hilbert scheme of points in the plane , 2004, math/0411210.

[7]  J. Bryan,et al.  The local Gromov-Witten theory of curves , 2004, math/0411037.

[8]  Amin Gholampour,et al.  On the equivariant Gromov-Witten Theory of P^2-bundles over curves , 2004, math/0409592.

[9]  A. Okounkov,et al.  Hodge integrals and invariants of the unknot , 2003, math/0307209.

[10]  A. Okounkov,et al.  Quantum Calabi-Yau and Classical Crystals , 2003, hep-th/0309208.

[11]  A. Okounkov,et al.  Virasoro constraints for target curves , 2003, math/0308097.

[12]  J. Bryan,et al.  Curves in Calabi-Yau 3-folds and Topological Quantum Field Theory , 2003, math/0306316.

[13]  Chiu-Chu Melissa Liu,et al.  A Proof of a Conjecture of Marino-Vafa on Hodge Integrals , 2003, math/0306257.

[14]  Mark Haiman,et al.  Notes on Macdonald Polynomials and the Geometry of Hilbert Schemes , 2002 .

[15]  Jun Li A Degeneration Formula of GW-Invariants , 2001, math/0110113.

[16]  C. Vafa,et al.  Framed knots at large N , 2001, hep-th/0108064.

[17]  A. Okounkov,et al.  Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram , 2001, math/0107056.

[18]  E. Vasserot Sur l'anneau de cohomologie du schéma de Hilbert de ? , 2000, math/0009127.

[19]  H. Hofer,et al.  Introduction to Symplectic Field Theory , 2000, math/0010059.

[20]  Wei-Ping Li,et al.  Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces , 2000, math/0009132.

[21]  M. Lehn,et al.  Symmetric groups and the cup product on the cohomology of Hilbert schemes , 2000, math/0009131.

[22]  Thomas H. Parker,et al.  Relative Gromov-Witten invariants , 1999, math/9907155.

[23]  M. Lehn Chern classes of tautological sheaves on Hilbert schemes of points on surfaces , 1998, math/9803091.

[24]  中島 啓 Lectures on Hilbert schemes of points on surfaces , 1999 .

[25]  An-Min Li,et al.  Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds , 1998, math/9803036.

[26]  R. Pandharipande,et al.  Localization of virtual classes , 1997, alg-geom/9708001.

[27]  I. Grojnowski Instantons and affine algebras I: The Hilbert scheme and vertex operators , 1995, alg-geom/9506020.

[28]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[29]  R. Bott A residue formula for holomorphic vector-fields , 1967 .

[30]  R. Thomas , 1881 .