Trust-Aware Recommendation in Social Networks

With the popularity of online social networks, social network information is becoming increasingly important to improve recommendation effectiveness of the existing recommender systems. In this paper, we propose an improved trust-aware recommendation approach, called TRA. TRA constructs a new social trust matrix based on users’ trust relationships derived from online social networks to alleviate the problem of data sparsity, and meanwhile naturally fuses users’ preferences and their trusted friends’ favors together by means of probability matrix factorization. The experimental results show that TRA performs much better than the state-of-the art recommendation approaches.