The effect of hydrogenation on magnetic interactions in CeNi

The crystal structure and magnetic properties of CeNiH3.7 were studied by means of powder x-ray diffraction, specific heat, and dc and ac magnetization techniques. It was established that hydrogenation stabilizes the 4f1 state of Ce and turns CeNi–H into a dilute Kondo system with TK = 3.7 K. The Kondo screening in CeNiH3.7 is suppressed by the applied magnetic field, although it still affects the properties of CeNiH3.7 at 14 T, as indicated by the enhanced γ-coefficient of electronic specific heat, which remains more than twice as large as in the precursor compound CeNi. Its zero-field value is as high as 1890 mJ (mol K2)−1. Hydrogenation acts primarily as the negative pressure agent in CeNiH3.7, while the role of H–metal bonding is secondary.

[1]  E. Gaudin,et al.  Hydrogenation inducing antiferromagnetism in the heavy-fermion ternary silicide CeRuSi , 2008 .

[2]  L. F. Barquín,et al.  Cluster-glass percolative scenario inCeNi1−xCuxstudied by very low-temperature ac susceptibility and dc magnetization , 2007 .

[3]  S. Matar Ab initio analysis of magnetovolume versus chemical effects in CeRuSi and its hydride , 2007 .

[4]  J. Iglesias,et al.  Mesoscopic magnetic states in metallic alloys with strong electronic correlations: a percolative scenario for CeNi 1-x Cux. , 2007, Physical Review Letters.

[5]  N. Marcano,et al.  極低温ac磁化率およびdc磁化で調べたCeNi1-xCuxでのクラスタガラス パーコレーションシナリオ , 2007 .

[6]  G. Hilscher,et al.  Chapter Five Magnetism of Hydrides , 2007 .

[7]  Hui Wu,et al.  Deuterium site occupancy and phase boundaries in ZrNiD x (0.87≤x≤3.0) , 2006 .

[8]  R. Pöttgen,et al.  Hydrogenation of the intermediate valence ternary stannides CeRhSn and CeIrSn , 2006 .

[9]  P. Alekseev,et al.  Role of Ce–Ni interaction in CeNi ground state formation , 2006 .

[10]  B. Chevalier,et al.  From antiferromagnetic ordering to spin fluctuation behavior induced by hydrogenation of ternary compounds CeCoSi and CeCoGe , 2006 .

[11]  P. Peshev,et al.  Hydrogenation of CeNi: hydride formation, structure and magnetic properties , 2006 .

[12]  J. Vejpravová,et al.  PrNi and CeNi hydrides with extremely high H-density , 2005 .

[13]  F. Weill,et al.  From intermediate valence to magnetic behavior without long-range order by hydrogenation of the ternary gallide CeNiGa , 2005 .

[14]  J. Herrero‐Albillos,et al.  Magnetic ground state ofCeNi1−xCux: A calorimetric investigation , 2005, cond-mat/0501462.

[15]  B. Chevalier,et al.  Effect of H insertion on the magnetic, electronic, and structural properties of CeCoSi , 2004 .

[16]  D. Paccard,et al.  On the structure and magnetic properties of CeNi with minor Cu substitutions , 2004 .

[17]  E. Gaudin,et al.  Hydrogenation and physical properties of the ternary germanide CeCoGe: an anisotropic expansion of the unit cell , 2004 .

[18]  J. Etourneau,et al.  LETTER TO THE EDITOR: Occurrence of ferromagnetic transition on hydrogen insertion in the ternary indide CeNiIn , 2002 .

[19]  G. Stewart Non-Fermi-liquid behavior in d - and f -electron metals , 2001 .

[20]  G. Lapertot,et al.  Dynamic magnetic response in intermediate-valence CeNi , 2000 .

[21]  L. P. Cardoso,et al.  Transition from Kondo to intermediate valence regime in : an ESR study , 1998 .

[22]  V. Verbetsky,et al.  Synthesis and transformations of hydrides under high quasihydrostatic pressures , 1997 .

[23]  N. Mōri,et al.  Intermediate valence state of CeNi single crystal at high pressure , 1994 .

[24]  Blanco,et al.  Specific heat of CeNixPt1-x pseudobinary compounds and related dilute alloys. , 1994, Physical review. B, Condensed matter.

[25]  J. Thompson,et al.  Chapter 133 High pressure studies — physical properties of anomalous Ce, Yb and U compounds , 1994 .

[26]  Y. Isikawa,et al.  Specific heat of dense Kondo compounds CexLa1−xNi , 1993 .

[27]  Suzuki,et al.  Resonant photoemission in CeNi single crystals. , 1993, Physical Review B (Condensed Matter).

[28]  J. Sereni Chapter 98 Low-temperature behaviour of cerium compounds: Specific heat of binary and related intermetallics , 1991 .

[29]  T. Mizushima,et al.  Correlation between the specific heat and high field magnetism of La1−xCexNi at low temperatures , 1987 .

[30]  Y. Isikawa,et al.  Formation of Kondo Lattice in La1-xCexNi , 1986 .

[31]  Creuzet,et al.  Large anisotropic thermal expansion and magnetostriction in the mixed-valence compound CeNi. , 1986, Physical Review B (Condensed Matter).

[32]  Gignoux,et al.  Pressure-induced first-order transition associated with 4f instability in CeNi. , 1985, Physical review. B, Condensed matter.

[33]  D. Gignoux,et al.  Spatial distribution of the induced magnetization in CeNi , 1985 .

[34]  D. Gignoux,et al.  Competition between the Kondo effect and exchange interactions in the Ce Ni x Pt 1 − x compounds , 1984 .

[35]  G. Fillion,et al.  4f magnetism in CeNi, PrNi and NdNi single crystals , 1984 .

[36]  D. Gignoux,et al.  Intermediate valence state of cerium in CeNi , 1983 .

[37]  M. Amano,et al.  Interstitial site occupation in ZrNiH , 1982 .

[38]  J. Lowenstein,et al.  Thermodynamics of the Kondo model , 1982 .

[39]  D. Westlake Stoichiometries and interstitial site occupation in the hydrides of zrni and other isostructural intermetallic compounds , 1980 .