Differential Regulation of Exocytosis by Calcium and CAPS in Semi-Intact Synaptosomes

[1]  E. Floor,et al.  CAPS (Mammalian UNC-31) Protein Localizes to Membranes Involved in Dense-Core Vesicle Exocytosis , 1998, Neuron.

[2]  M. Linial SNARE Proteins‐Why So Many, Why So Few? , 1997, Journal of neurochemistry.

[3]  R. Scheller,et al.  Better Late Than Never: A Role for Rabs Late in Exocytosis , 1997, Neuron.

[4]  K. Loyet,et al.  Novel Ca2+-binding Protein (CAPS) Related to UNC-31 Required for Ca2+-activated Exocytosis* , 1997, The Journal of Biological Chemistry.

[5]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[6]  T. Martin,et al.  Docked Secretory Vesicles Undergo Ca2+-activated Exocytosis in a Cell-free System* , 1997, The Journal of Biological Chemistry.

[7]  S. Ball,et al.  Occurrence of Two Types of Secretory Vesicles in the Human Neuroblastoma SH‐SY5Y , 1997, Journal of neurochemistry.

[8]  J A Crowell,et al.  A genetic selection for Caenorhabditis elegans synaptic transmission mutants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Wilson,et al.  SNAP-25 and synaptotagmin involvement in the final Ca(2+)-dependent triggering of neurotransmitter exocytosis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Bruns,et al.  Real-time measurement of transmitter release from single synaptic vesicles , 1995, Nature.

[11]  Stephen J. Smith,et al.  Vesicle pool mobilization during action potential firing at hippocampal synapses , 1995, Neuron.

[12]  R. Burgoyne,et al.  Ca2+ and secretory-vesicle dynamics , 1995, Trends in Neurosciences.

[13]  R. Scheller,et al.  The Biochemistry of Neurotransmitter Secretion(*) , 1995, The Journal of Biological Chemistry.

[14]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[15]  T. Martin The molecular machinery for fast and slow neurosecretion , 1994, Current Opinion in Neurobiology.

[16]  Gary Matthews,et al.  Inhibition of endocytosis by elevated internal calcium in a synaptic terminal , 1994, Nature.

[17]  R. Jahn,et al.  Clostridial neurotoxins: new tools for dissecting exocytosis. , 1994, Trends in cell biology.

[18]  T. Südhof,et al.  Rab proteins in regulated exocytosis. , 1994, Trends in biochemical sciences.

[19]  H. V. Gersdorff,et al.  Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals , 1994, Nature.

[20]  T. Südhof,et al.  Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. , 1994, The Journal of biological chemistry.

[21]  J. Rothman,et al.  Removal of Rab GTP-binding proteins from Golgi membranes by GDP dissociation inhibitor inhibits inter-cisternal transport in the Golgi stacks. , 1994, The Journal of biological chemistry.

[22]  J. Hay,et al.  Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion , 1993, Nature.

[23]  F. Benfenati,et al.  Botulinum neurotoxins serotypes A and E cleave SNAP‐25 at distinct COOH‐terminal peptide bonds , 1993, FEBS letters.

[24]  Stephen J. Smith,et al.  The kinetics of synaptic vesicle recycling measured at single presynaptic boutons , 1993, Neuron.

[25]  G. Schiavo,et al.  Tetanus and botulism neurotoxins: a new group of zinc proteases. , 1993, Trends in biochemical sciences.

[26]  C. Polosa,et al.  Dynamics of large dense-cored vesicles in synaptic boutons of the cat superior cervical ganglion , 1993, Neuroscience.

[27]  W. Huttner,et al.  Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles. , 1993, Current opinion in cell biology.

[28]  W. Gispen,et al.  Evidence for a Role of Protein Kinase C Substrate B‐50 (GAP‐43) in Ca2+‐Induced Neuropeptide Cholecystokinin‐8 Release from Permeated Synaptosomes , 1993, Journal of neurochemistry.

[29]  Cori Bargmann,et al.  The Caenorhabditis elegans unc-31 gene affects multiple nervous system-controlled functions. , 1993, Genetics.

[30]  L. Dekker,et al.  Studies on the Role of B‐50 (GAP‐43) in the Mechanism of Ca2+‐Induced Noradrenaline Release: Lack of Involvement of Protein Kinase C After the Ca2+ Trigger , 1993, Journal of neurochemistry.

[31]  F. Benfenati,et al.  Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin , 1992, Nature.

[32]  T. Martin,et al.  A novel 145 kd brain cytosolic protein reconstitutes Ca2+-regulated secretion in permeable neuroendocrine cells , 1992, Cell.

[33]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[34]  R. Holz,et al.  Mechanisms Involved in Calcium‐Dependent Exocytosis a , 1991, Annals of the New York Academy of Sciences.

[35]  M. Verhage,et al.  Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals , 1991, Neuron.

[36]  L. Dekker,et al.  Noradrenaline Release from Streptolysin O‐Permeated Rat Cortical Synaptosomes: Effects of Calcium, Phorbol Esters, Protein Kinase Inhibitors, and Antibodies to the Neuron‐Specific Protein Kinase C Substrate B‐50 (GAP‐43) , 1991, Journal of neurochemistry.

[37]  T. Südhof,et al.  A small GTP-binding protein dissociates from synaptic vesicles during exocytosis , 1991, Nature.

[38]  P. Maycox,et al.  Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate , 1989, Neuron.

[39]  M. Bader,et al.  Introduction of Macromolecules into Bovine Adrenal Medullary Chromaffin Cells and Rat Pheochromocytoma Cells (PC12) by Permeabilization with Streptolysin O: Inhibitory Effect of Tetanus Toxin on Catecholamine Secretion , 1989, Journal of neurochemistry.

[40]  G. Ahnert-Hilger,et al.  Reductive chain separation of botulinum A toxin — a prerequisite to its inhibitory action on exocytosis in chromaffin cells , 1989, FEBS letters.

[41]  H. Horvitz,et al.  A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons , 1988, Nature.

[42]  P. De Camilli,et al.  Differential effect of alpha-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Nicholls,et al.  Calcium‐Dependent and‐Independent Release of Glutamate from Synaptosomes Monitored by Continuous Fluorometry , 1987, Journal of neurochemistry.

[44]  N. Ip,et al.  Pattern of presynaptic nerve activity can determine the type of neurotransmitter regulating a postsynaptic event , 1984, Nature.

[45]  Å. Thureson-Klein Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals , 1983, Neuroscience.

[46]  M. Saraste,et al.  FEBS Lett , 2000 .

[47]  R. Scheller,et al.  Synaptic vesicle biogenesis, docking, and fusion: a molecular description. , 1996, Physiological reviews.

[48]  G. Schiavo,et al.  Tetanus and Botulism Neurotoxins , 1996 .

[49]  B. Collier Chapter 24 Activity-related modulation of cholinergic transmission , 1996 .

[50]  S. Bloom,et al.  Effects of stimulation of the chorda tympani in bursts on submaxillary responses in the cat , 1982, The Journal of physiology.