Algorithmic properties of the midpoint predictor-corrector time integrator.
暂无分享,去创建一个
Sandia Report | Guglielmo Scovazzi | Edward Love | W. J. Rider | S. Report | E. Love | W. Rider | G. Scovazzi
[1] D. Flanagan,et al. PRONTO 3D: A three-dimensional transient solid dynamics program , 1989 .
[2] Mikhail Shashkov,et al. Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .
[3] C. L. Rousculp,et al. A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry , 2000 .
[4] S. Krenk. Dispersion-corrected explicit integration of the wave equation , 2001 .
[5] T. J.R. Hughes,et al. ANALYSIS OF TRANSIENT ALGORITHMS WITH PARTICULAR REFERENCE TO STABILITY BEHAVIOR. , 1983 .
[6] M. Shashkov,et al. The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .
[7] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[8] A. Curnier. Computational methods in solid mechanics , 1994 .
[9] Brian H. Hahn,et al. Essential Matlab For Engineers And Scientists , 2008 .
[10] K. Park. Practical aspects of numerical time integration , 1977 .
[11] T. Belytschko,et al. Dispersion analysis of finite element semidiscretizations of the two‐dimensional wave equation , 1982 .
[12] J. P. Woodruff. KOVEC user's manual , 1976 .
[13] P. Woodward,et al. The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .
[14] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations , 1989 .
[15] Samuel W. Key,et al. Transient shell response by numerical time integration , 1973 .
[16] Jintai Chung,et al. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation , 1996 .
[17] L. P. Bindeman,et al. Assumed strain stabilization of the eight node hexahedral element , 1993 .
[18] Amos Gilat,et al. Matlab, An Introduction With Applications , 2003 .
[19] J. C. Simo,et al. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .
[20] T. Belytschko,et al. Stability of explicit‐implicit mesh partitions in time integration , 1978 .
[21] Wulf G. Dettmer,et al. An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation , 2003 .
[22] Raphaël Loubère,et al. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods , 2005 .
[23] Stephen Wolfram,et al. The Mathematica Book , 1996 .
[24] R. B. Pember,et al. A Comparison of Staggered-Mesh Lagrange Plus Remap and Cell-Centered Direct Eulerian Godunov Schemes for Rulerian Shock Hydrodynamics , 2000 .
[25] James P. Braselton,et al. Mathematica by Example , 1992 .
[26] Sandia Report,et al. Lagrangian Continuum Dynamics in ALEGRA , 2007 .
[27] R. Menikoff,et al. The Riemann problem for fluid flow of real materials , 1989 .
[28] W. Cabot,et al. A high-wavenumber viscosity for high-resolution numerical methods , 2004 .
[29] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[30] D. Serre. Matrices: Theory and Applications , 2002 .
[31] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[32] M. Shashkov,et al. A Multi-Scale Q1/P0 Approach to Lagrangian Shock Hydrodynamics , 2007 .
[33] Ted Belytschko,et al. Eigenvalues and Stable Time Steps for the Uniform Strain Hexahedron and Quadrilateral , 1984 .
[34] Stephen H. Friedberg,et al. Linear Algebra , 2018, Computational Mathematics with SageMath.
[35] R. Cook,et al. Concepts and Applications of Finite Element Analysis , 1974 .
[36] E. Kreyszig. Introductory Functional Analysis With Applications , 1978 .