Hahn's symmetric quantum variational calculus

We introduce and develop the Hahn symmetric quantum calculus with applications to the calculus of variations. Namely, we obtain a necessary optimality condition of Euler--Lagrange type and a sufficient optimality condition for variational problems within the context of Hahn's symmetric calculus. Moreover, we show the effectiveness of Leitmann's direct method when applied to Hahn's symmetric variational calculus. Illustrative examples are provided.

[1]  Artur M. C. Brito da Cruz,et al.  The q-symmetric variational calculus , 2012, Comput. Math. Appl..

[2]  Delfim F. M. Torres,et al.  Higher-order infinite horizon variational problems in discrete quantum calculus , 2012, Comput. Math. Appl..

[3]  Delfim F. M. Torres,et al.  Higher-order Hahn's quantum variational calculus , 2011, 1101.3653.

[4]  Delfim F. M. Torres,et al.  The power quantum calculus and variational problems , 2011, 1107.0344.

[5]  Delfim F. M. Torres,et al.  Nondifferentiable variational principles in terms of a quantum operator , 2011, 1106.3831.

[6]  Delfim F. M. Torres,et al.  L'Hopital-Type Rules for Monotonicity with Application to Quantum Calculus , 2010, 1011.4880.

[7]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[8]  Agnieszka B. Malinowska,et al.  The Hahn Quantum Variational Calculus , 2010, J. Optim. Theory Appl..

[9]  Delfim F. M. Torres,et al.  Leitmann's direct method for fractional optimization problems , 2010, Appl. Math. Comput..

[10]  Agnieszka B. Malinowska,et al.  Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales , 2010, Appl. Math. Comput..

[11]  A. Lavagno,et al.  Quantum mechanics in q-deformed calculus , 2009 .

[12]  Delfim F. M. Torres,et al.  Constants of Motion for Non-Differentiable Quantum Variational Problems , 2008, 0805.0720.

[13]  George Leitmann,et al.  Fields of extremals and sufficient conditions for the simplest problem of the calculus of variations , 2008, J. Glob. Optim..

[14]  Delfim F. M. Torres,et al.  Contrasting Two Transformation-based Methods for Obtaining Absolute Extrema , 2008 .

[15]  Thomas Ernst,et al.  The different tongues of q-calculus , 2008 .

[16]  George Leitmann,et al.  Coordinate Transformation Method for the Extremization of Multiple Integrals , 2005 .

[17]  George Leitmann On a class of direct optimization problems 1,2 , 2002 .

[18]  A. Lavagno,et al.  q-Deformed structures and nonextensive statistics: a comparative study , 2002 .

[19]  V. Kac,et al.  Symmetric Quantum Calculus , 2002 .

[20]  George Leitmann,et al.  Some Extensions to a Direct Optimization Method , 2001 .

[21]  G. Leitmann,et al.  On a Class of Direct Optimization Problems , 2001 .

[22]  Donam Youm q-deformed conformal quantum mechanics , 2000, hep-th/0007114.

[23]  Page Information in black hole radiation. , 1993, Physical review letters.

[24]  George Leitmann,et al.  A note on absolute extrema of certain integrals , 1967 .

[25]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[26]  G. Boole,et al.  Calculus of Finite Differences , 1961 .

[27]  W. Hahn Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .

[28]  F. H. Jackson q-Difference Equations , 1910 .