Chaogates: morphing logic gates that exploit dynamical patterns.

Chaotic systems can yield a wide variety of patterns. Here we use this feature to generate all possible fundamental logic gate functions. This forms the basis of the design of a dynamical computing device, a chaogate, that can be rapidly morphed to become any desired logic gate. Here we review the basic concepts underlying this and present an extension of the formalism to include asymmetric logic functions.

[1]  William L. Ditto,et al.  Logic from nonlinear dynamical evolution , 2009 .

[2]  M. Morris Mano,et al.  Computer system architecture (3. ed.) , 1993 .

[3]  William L. Ditto,et al.  Chaos computing: implementation of fundamental logical gates by chaotic elements , 2002 .

[4]  Michael J. Adams,et al.  Optoelectronic realisation of NOR logic gate using chaotic two-section lasers , 2005 .

[5]  Leon O. Chua,et al.  Nonlinear Dynamics of Driven Single-electron Tunneling Junctions , 2000, Int. J. Bifurc. Chaos.

[6]  Sudeshna Sinha Adaptive dynamics on circle maps , 1995 .

[7]  I. Raja Mohamed,et al.  Chaos computing: experimental realization of NOR gate using a simple chaotic circuit , 2005 .

[8]  M. Morris Mano,et al.  Computer system architecture , 1982 .

[9]  Sudeshna Sinha,et al.  Parallel computing with extended dynamical systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Sudeshna Sinha,et al.  Flexible parallel implementation of logic gates using chaotic elements. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Adi R. Bulsara,et al.  Realization of reliable and flexible logic gates using noisy nonlinear circuits , 2009 .

[12]  Gary Taubes Computer Design Meets Darwin , 1997, Science.

[13]  William L. Ditto,et al.  Exploiting Nonlinear Dynamics to Store and Process Information , 2008, Int. J. Bifurc. Chaos.

[14]  S Sinha Using thresholding at varying intervals to obtain different temporal patterns. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Sinha Unidirectional adaptive dynamics. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  John F. Lindner,et al.  Nonlinearity and computation: implementing logic as a nonlinear dynamical system , 1999 .

[17]  William L. Ditto,et al.  A simple nonlinear dynamical computing device , 2009 .

[18]  Sudeshna Sinha,et al.  Chaos computing: ideas and implementations , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Sudeshna Sinha,et al.  Reliable logic circuit elements that exploit nonlinearity in the presence of a noise floor. , 2009, Physical review letters.

[20]  Biswas,et al.  Adaptive dynamics on a chaotic lattice. , 1993, Physical review letters.

[21]  Sudeshna Sinha,et al.  A noise-assisted reprogrammable nanomechanical logic gate. , 2010, Nano letters.

[22]  Sudeshna Sinha,et al.  Exploiting the effect of noise on a chemical system to obtain logic gates , 2009 .

[23]  Manfred Gilli,et al.  Understanding complex systems , 1981, Autom..

[24]  MOHAMMAD R. JAHED-MOTLAGH,et al.  Fault Tolerance and Detection in Chaotic Computers , 2007, Int. J. Bifurc. Chaos.

[25]  W L Ditto,et al.  Controlling neuronal spikes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  William L. Ditto,et al.  DYNAMICS BASED COMPUTATION , 1998 .

[27]  William L. Ditto,et al.  Implementation of nor Gate by a Chaotic Chua's Circuit , 2003, Int. J. Bifurc. Chaos.

[28]  Sudeshna Sinha,et al.  Exploiting the controlled responses of chaotic elements to design configurable hardware , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Sudeshna Sinha,et al.  Experimental realization of chaos control by thresholding. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Sudeshna Sinha,et al.  Using synchronization to obtain dynamic logic gates. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Thomas C. Bartee Computer architecture and logic design , 1991, McGraw-Hill international editions: computer science series.

[32]  Leon Glass,et al.  Bifurcations in Flat-Topped Maps and the Control of Cardiac Chaos , 1994 .

[33]  D Lenstra,et al.  New role for nonlinear dynamics and chaos in integrated semiconductor laser technology. , 2007, Physical review letters.

[34]  W L Ditto,et al.  Computing with distributed chaos. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.