Title Adaptive orthogonal series estimation in additive stochasticregression models

In this paper, we consider additive stochastic nonparametric regression models. By approximating the nonparametric components by a class of orthogonal series and using a generalized cross-validation criterion, an adaptive and simultaneous estimation procedure for the nonparametric components is constructed. We illustrate the adaptive and simultaneous estimation procedure by a number of simulated and real examples.

[1]  Jiti Gao,et al.  Model Specification Tests in Nonparametric Stochastic Regression Models , 2002 .

[2]  Jiti Gao,et al.  Adaptive orthogonal series estimation in additive stochastic regression models , 2002 .

[3]  Vo V. Anh,et al.  Semiparametric Approximation Methods in Multivariate Model Selection , 2001, J. Complex..

[4]  Carlo Novara,et al.  Nonlinear Time Series , 2003 .

[5]  Adaptive estimation in partially linear autoregressive models , 2000 .

[6]  Chih-Ling Tsai,et al.  Semiparametric regression model selections , 1999 .

[7]  Jiti Gao,et al.  Semiparametric Regression Smoothing of Non‐linear Time Series , 1998 .

[8]  Wolfgang Härdle,et al.  Direct estimation of low-dimensional components in additive models , 1998 .

[9]  Dag Tjøstheim,et al.  Linearity Testing using Local Polynomial Approximation , 1998 .

[10]  Jiti Gao,et al.  M-TYPE SMOOTHING SPLINES IN NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION MODELS , 1997 .

[11]  Oliver Linton,et al.  Miscellanea Efficient estimation of additive nonparametric regression models , 1997 .

[12]  Dag Tjøstheim,et al.  Additive Nonlinear ARX Time Series and Projection Estimates , 1997, Econometric Theory.

[13]  Hua Liang,et al.  Statistical Inference in Single-Index and Partially Nonlinear Models , 1997 .

[14]  J. Shao AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION , 1997 .

[15]  Robert Kohn,et al.  A BAYESIAN APPROACH TO ESTIMATING AND FORECASTING ADDITIVE NONPARAMETRIC AUTOREGRESSIVE MODELS , 1996 .

[16]  Peter Hall,et al.  Formulae for Mean Integrated Squared Error of Nonlinear Wavelet-Based Density Estimators , 1995 .

[17]  Clifford M. Hurvich,et al.  Relative rates of convergence for efficient model selection criteria in linear regression , 1995 .

[18]  Hua Liang,et al.  Asymptotic normality of pseudo-LS estimator for partly linear autoregression models , 1995 .

[19]  O. Linton,et al.  A kernel method of estimating structured nonparametric regression based on marginal integration , 1995 .

[20]  D. Tjøstheim,et al.  Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality , 1995, Econometric Theory.

[21]  Dag Tjøstheim,et al.  Nonparametric Identification of Nonlinear Time Series: Selecting Significant Lags , 1994 .

[22]  Dag Tjøstheim,et al.  Nonparametric Identification of Nonlinear Time Series: Projections , 1994 .

[23]  Philippe Vieu,et al.  Choice of regressors in nonparametric estimation , 1994 .

[24]  D. Tjøstheim Non-linear Time Series: A Selective Review* , 1994 .

[25]  Anil K. Bera,et al.  ARCH Models: Properties, Estimation and Testing , 1993 .

[26]  Ruey S. Tsay,et al.  Nonlinear Additive ARX Models , 1993 .

[27]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[28]  W. Härdle,et al.  Kernel regression smoothing of time series , 1992 .

[29]  James Stephen Marron,et al.  Regression smoothing parameters that are not far from their optimum , 1992 .

[30]  A. Ronald Gallant,et al.  On the asymptotic normality of Fourier flexible form estimates , 1991 .

[31]  Brian J. Eastwood,et al.  Adaptive Rules for Seminonparametric Estimators That Achieve Asymptotic Normality , 1991, Econometric Theory.

[32]  Hung Chen,et al.  Selection of the splined variables and convergence rates in a partial spline model , 1991 .

[33]  P. Vieu,et al.  Data-Driven Bandwidth Choice for Density Estimation Based on Dependent Data , 1990 .

[34]  G. Wahba Spline Models for Observational Data , 1990 .

[35]  Wolfgang Härdle,et al.  Applied Nonparametric Regression: The kernel method , 1990 .

[36]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[37]  W. Härdle,et al.  How Far are Automatically Chosen Regression Smoothing Parameters from their Optimum , 1988 .

[38]  Ker-Chau Li,et al.  Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .

[39]  Ker-Chau Li,et al.  Asymptotic optimality of CL and generalized cross-validation in ridge regression with application to spline smoothing , 1986 .

[40]  Ker-Chau Li,et al.  From Stein's Unbiased Risk Estimates to the Method of Generalized Cross Validation , 1985 .

[41]  W. J. Studden,et al.  Asymptotic Integrated Mean Square Error Using Least Squares and Bias Minimizing Splines , 1980 .

[42]  Howell Tong Some comments on the Canadian Lynx data with discussion , 1977 .

[43]  G. Seber,et al.  Linear Regression Analysis , 1980 .