On kernels and nuclei of rank metric codes

For each rank metric code $$\mathcal {C}\subseteq \mathbb {K}^{m\times n}$$C⊆Km×n, we associate a translation structure, the kernel of which is shown to be invariant with respect to the equivalence on rank metric codes. When $$\mathcal {C}$$C is $$\mathbb {K}$$K-linear, we also propose and investigate other two invariants called its middle nucleus and right nucleus. When $$\mathbb {K}$$K is a finite field $$\mathbb {F}_q$$Fq and $$\mathcal {C}$$C is a maximum rank distance code with minimum distance $$d<\min \{m,n\}$$d<min{m,n} or $$\gcd (m,n)=1$$gcd(m,n)=1, the kernel of the associated translation structure is proved to be $$\mathbb {F}_q$$Fq. Furthermore, we also show that the middle nucleus of a linear maximum rank distance code over $$\mathbb {F}_q$$Fq must be a finite field; its right nucleus also has to be a finite field under the condition $$\max \{d,m-d+2\} \geqslant \left\lfloor \frac{n}{2} \right\rfloor +1$$max{d,m-d+2}⩾n2+1. Let $$\mathcal {D}$$D be the DHO-set associated with a bilinear dimensional dual hyperoval over $$\mathbb {F}_2$$F2. The set $$\mathcal {D}$$D gives rise to a linear rank metric code, and we show that its kernel and right nucleus are isomorphic to $$\mathbb {F}_2$$F2. Also, its middle nucleus must be a finite field containing $$\mathbb {F}_q$$Fq. Moreover, we also consider the kernel and the nuclei of $$\mathcal {D}^k$$Dk where k is a Knuth operation.

[1]  Gabriele Nebe,et al.  Automorphism groups of Gabidulin-like codes , 2016, ArXiv.

[2]  W. Kantor Finite semifields , 2005 .

[3]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[4]  Alexander Pott,et al.  Almost perfect and planar functions , 2016, Des. Codes Cryptogr..

[5]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[6]  Satoshi Yoshiara,et al.  Ambient Spaces of Dimensional Dual Arcs , 2004 .

[7]  Ulrich Dempwolff,et al.  Dimensional doubly dual hyperovals and bent functions , 2013 .

[8]  Hiroaki Taniguchi,et al.  Bilinear dual hyperovals from binary commutative presemifields , 2016, Finite Fields Their Appl..

[9]  Hiroaki Taniguchi New dimensional dual hyperovals, which are not quotients of the classical dual hyperovals , 2014, Discret. Math..

[10]  Giuseppe Marino,et al.  On the nuclei of a finite semifield , 2011, 1111.3217.

[11]  Ulrich Dempwolff,et al.  Dimensional dual hyperovals and APN functions with translation groups , 2014 .

[12]  Yves Edel Quadratic APN functions as subspaces of alternating bilinear forms , 2010 .

[13]  Giuseppe Marino,et al.  Non-linear maximum rank distance codes , 2016, Des. Codes Cryptogr..

[14]  Satoshi Yoshiara Dimensional dual hyperovals associated with quadratic APN functions , 2008 .

[15]  Navin M. Singhi,et al.  Projective planes I , 2010, Eur. J. Comb..

[16]  Y. Edel On some Representations of Quadratic APN Functions and Dimensional Dual Hyperovals (Algebraic Combinatorics and related groups and algebras) , 2010 .

[17]  Anna-Lena Horlemann-Trautmann,et al.  New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions , 2015, Adv. Math. Commun..

[18]  Rudolf Lide,et al.  Finite fields , 1983 .

[19]  Guglielmo Lunardon,et al.  MRD-codes and linear sets , 2017, J. Comb. Theory, Ser. A.

[20]  Ulrich Dempwolff Symmetric doubly dual hyperovals have an odd rank , 2015, Des. Codes Cryptogr..

[21]  Yue Zhou,et al.  Switching Construction of Planar Functions on Finite Fields , 2010, WAIFI.

[22]  Claude Carlet,et al.  Constructing new APN functions from known ones , 2009, Finite Fields Their Appl..

[23]  Xiang-dong Hou,et al.  Switchings of semifield multiplications , 2014, Des. Codes Cryptogr..

[24]  Kaisa Nyberg,et al.  Perfect nonlinear functions and cryptography , 2015, Finite Fields Their Appl..

[25]  Alfred Wassermann,et al.  Algebraic structures of MRD codes , 2016, Adv. Math. Commun..

[26]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[27]  Giampaolo Menichetti On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field , 1977 .

[28]  Katherine Morrison,et al.  Equivalence for Rank-Metric and Matrix Codes and Automorphism Groups of Gabidulin Codes , 2013, IEEE Transactions on Information Theory.

[29]  Giuseppe Marino,et al.  Towards the classification of rank 2 semifields 6-dimensional over their center , 2011, Des. Codes Cryptogr..

[30]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[31]  Alexander Pott,et al.  A new almost perfect nonlinear function which is not quadratic , 2008, Adv. Math. Commun..

[32]  Z. Wan,et al.  Geometry of Matrices: In Memory of Professor L K Hua (1910 – 1985) , 1996 .

[33]  A. Adrian Albert,et al.  Generalized twisted fields. , 1961 .

[34]  Yves Edel On quadratic APN functions and dimensional dual hyperovals , 2010, Des. Codes Cryptogr..

[35]  Norman L. Johnson,et al.  Handbook of Finite Translation Planes , 2007 .

[36]  D. Knuth Finite semifields and projective planes , 1965 .

[37]  Yongqiang Li,et al.  A matrix approach for constructing quadratic APN functions , 2014, Des. Codes Cryptogr..

[38]  Guglielmo Lunardon,et al.  Desarguesian spreads , 2011 .

[39]  Norman L. Johnson,et al.  The Collineation Groups of Generalized Twisted Field Planes , 1999 .

[40]  Ernst M. Gabidulin,et al.  The new construction of rank codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[41]  A. Pott,et al.  A new family of semifields with 2 parameters , 2011, 1103.4555.

[42]  John Sheekey,et al.  A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..

[43]  Z. Wan,et al.  Geometry of Matrices , 1996 .

[44]  Tim Penttila,et al.  Dimensional dual arcs – a survey , 2006 .

[45]  Satoshi Yoshiara,et al.  Notes on APN functions, semibiplanes and dimensional dual hyperovals , 2010, Des. Codes Cryptogr..

[46]  W. Kantor,et al.  Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads , 2013, 1303.4073.

[47]  Hiroaki Taniguchi On the duals of certain d-dimensional dual hyperovals in PG(2d+1, 2) , 2009, Finite Fields Their Appl..

[48]  Rocco Trombetti,et al.  Generalized Twisted Gabidulin Codes , 2015, J. Comb. Theory, Ser. A.

[49]  n-Dimensional algebras over a field with a cyclic extension of degree n , 1996 .