Predicting network functions with nested patterns

Identifying suitable patterns in complex biological interaction networks helps understanding network functions and allows for predictions at the pattern level: by recognizing a known pattern, one can assign its previously established function. However, current approaches fail for previously unseen patterns, when patterns overlap and when they are embedded into a new network context. Here we show how to conceptually extend pattern-based approaches. We define metabolite patterns in metabolic networks that formalize co-occurrences of metabolites. Our probabilistic framework decodes the implicit information in the networks' metabolite patterns to predict metabolic functions. We demonstrate the predictive power by identifying 'indicator patterns', for instance, for enzyme classification, by predicting directions of novel reactions and of known reactions in new network contexts, and by ranking candidate network extensions for gap filling. Beyond their use in improving genome annotations and metabolic network models, we expect that the concepts transfer to other network types.

[1]  James A. Eddy,et al.  Accomplishments in genome‐scale in silico modeling for industrial and medical biotechnology , 2009, Biotechnology journal.

[2]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[3]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[4]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[5]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[6]  U. Sauer,et al.  Global probabilistic annotation of metabolic networks enables enzyme discovery , 2012, Nature chemical biology.

[7]  B. Palsson,et al.  Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants , 2005, Journal of bacteriology.

[8]  B. Palsson,et al.  Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology? , 2003, Biotechnology and bioengineering.

[9]  Rick L Stevens,et al.  iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations , 2009, Genome Biology.

[10]  Thomas Bernard,et al.  MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks , 2013, Bioinform..

[11]  Eytan Ruppin,et al.  Network-based prediction of metabolic enzymes' subcellular localization , 2009, Bioinform..

[12]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[13]  Keng C. Soh,et al.  DREAMS of metabolism. , 2010, Trends in biotechnology.

[14]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[15]  Juho Rousu,et al.  A Computational Method for Reconstructing Gapless Metabolic Networks , 2008, BIRD.

[16]  Markus J. Herrgård,et al.  Network-based prediction of human tissue-specific metabolism , 2008, Nature Biotechnology.

[17]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[18]  Zoubin Ghahramani,et al.  An Introduction to Hidden Markov Models and Bayesian Networks , 2001, Int. J. Pattern Recognit. Artif. Intell..

[19]  P. Bork,et al.  Evolution of biomolecular networks — lessons from metabolic and protein interactions , 2009, Nature Reviews Molecular Cell Biology.

[20]  Yoav Freund,et al.  Identifying metabolic enzymes with multiple types of association evidence , 2006, BMC Bioinformatics.

[21]  Matthias Heinemann,et al.  Systematic assignment of thermodynamic constraints in metabolic network models , 2006, BMC Bioinformatics.

[22]  Vinay Satish Kumar,et al.  A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189 , 2009, PLoS Comput. Biol..

[23]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[24]  D. Haussler,et al.  A hidden Markov model that finds genes in E. coli DNA. , 1994, Nucleic acids research.

[25]  Bernhard O. Palsson,et al.  BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions , 2010, BMC Bioinformatics.

[26]  John Gould,et al.  Toward the automated generation of genome-scale metabolic networks in the SEED , 2007, BMC Bioinformatics.

[27]  N. Price,et al.  Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis , 2010, Proceedings of the National Academy of Sciences.

[28]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[29]  Gert Vriend,et al.  Correcting ligands, metabolites, and pathways , 2006, BMC Bioinformatics.

[30]  Eran Segal,et al.  From DNA sequence to transcriptional behaviour: a quantitative approach , 2009, Nature Reviews Genetics.

[31]  J. Stelling,et al.  Genome‐scale metabolic networks , 2009, Wiley interdisciplinary reviews. Systems biology and medicine.

[32]  S. Schuster,et al.  Metabolic network structure determines key aspects of functionality and regulation , 2002, Nature.

[33]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[34]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[35]  Ronan M. T. Fleming,et al.  Quantitative assignment of reaction directionality in constraint-based models of metabolism: application to Escherichia coli. , 2009, Biophysical chemistry.

[36]  Vincent Schächter,et al.  Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data , 2008, BMC Systems Biology.

[37]  Bas Teusink,et al.  Accelerating the reconstruction of genome-scale metabolic networks , 2006, BMC Bioinformatics.

[38]  Santiago Schnell,et al.  Network motifs provide signatures that characterize metabolism. , 2013, Molecular bioSystems.

[39]  Jeffrey D. Orth,et al.  Systematizing the generation of missing metabolic knowledge , 2010, Biotechnology and bioengineering.

[40]  Adam M. Feist,et al.  Modeling methanogenesis with a genome‐scale metabolic reconstruction of Methanosarcina barkeri , 2006 .

[41]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[42]  J. Stark,et al.  Network motifs: structure does not determine function , 2006, BMC Genomics.

[43]  Vinay Satish Kumar,et al.  GrowMatch: An Automated Method for Reconciling In Silico/In Vivo Growth Predictions , 2009, PLoS Comput. Biol..

[44]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[45]  Bernhard O. Palsson,et al.  Metabolite coupling in genome-scale metabolic networks , 2006, BMC Bioinformatics.

[46]  Hawoong Jeong,et al.  Exploring local structural organization of metabolic networks using subgraph patterns. , 2006, Journal of theoretical biology.

[47]  Cristina G. Fernandes,et al.  Motif Search in Graphs: Application to Metabolic Networks , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[48]  Matthew D. Jankowski,et al.  Group contribution method for thermodynamic analysis of complex metabolic networks. , 2008, Biophysical journal.

[49]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[50]  Vinay Satish Kumar,et al.  Optimization based automated curation of metabolic reconstructions , 2007, BMC Bioinformatics.

[51]  Wendell A Lim,et al.  Design principles of regulatory networks: searching for the molecular algorithms of the cell. , 2013, Molecular cell.

[52]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[53]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[54]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[55]  J. Gasteiger,et al.  IGERS: inferring Gibbs energy changes of biochemical reactions from reaction similarities. , 2010, Biophysical journal.