Fast and Separable Estimation in High-Dimensional Tensor Gaussian Graphical Models
暂无分享,去创建一个
Qing Mai | Xin Zhang | Keqian Min | Qing Mai | Xin Zhang | Keqian Min
[1] Himanshu Gupta,et al. APPLYING A SPATIOTEMPORAL MODEL FOR LONGITUDINAL CARDIAC IMAGING DATA. , 2016, The annals of applied statistics.
[2] Tingting Zhang,et al. Efficient Algorithm for Sparse Tensor-variate Gaussian Graphical Models via Gradient Descent , 2017, AISTATS.
[3] Chenlei Leng,et al. Sparse Matrix Graphical Models , 2012 .
[4] Con Stough,et al. Alcohol impairs speed of information processing and simple and choice reaction time and differentially impairs higher-order cognitive abilities , 2000 .
[5] Jian Yang,et al. Tensor Graphical Model: Non-convex Optimization and Statistical Inference , 2016, 1609.04522.
[6] P. Diggle,et al. Analysis of Longitudinal Data , 2003 .
[7] Patrick Danaher,et al. The joint graphical lasso for inverse covariance estimation across multiple classes , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[8] M. Genton. Separable approximations of space‐time covariance matrices , 2007 .
[9] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[10] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[11] Hongzhe Li,et al. Graphical model selection and estimation for high dimensional tensor data , 2014, J. Multivar. Anal..
[12] King-Sun Fu,et al. IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[14] N. Altman,et al. On dimension folding of matrix- or array-valued statistical objects , 2010, 1002.4789.
[15] P. Guttorp,et al. Studies in the history of probability and statistics XLIX On the Matérn correlation family , 2006 .
[16] Xu Lei,et al. Understanding the Influences of EEG Reference: A Large-Scale Brain Network Perspective , 2017, Front. Neurosci..
[17] H. Zou,et al. Sparse precision matrix estimation via lasso penalized D-trace loss , 2014 .
[18] Hongtu Zhu,et al. Tensor Regression with Applications in Neuroimaging Data Analysis , 2012, Journal of the American Statistical Association.
[19] Annie Qu,et al. Tensors in Statistics , 2021 .
[20] H. Begleiter,et al. Event related potentials during object recognition tasks , 1995, Brain Research Bulletin.
[21] Adam J. Rothman,et al. Shrinking characteristics of precision matrix estimators , 2017, 1704.04820.
[22] Shuheng Zhou. Gemini: Graph estimation with matrix variate normal instances , 2012, 1209.5075.
[23] J. Ware,et al. Applied Longitudinal Analysis , 2004 .
[24] A. Rukhin. Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.
[25] Adam J Rothman,et al. Sparse Multivariate Regression With Covariance Estimation , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[26] Alfred O. Hero,et al. On Convergence of Kronecker Graphical Lasso Algorithms , 2012, IEEE Transactions on Signal Processing.
[27] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.
[28] Eric F. Lock,et al. Tensor-on-Tensor Regression , 2017, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[29] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[30] Mathias Drton,et al. Existence and uniqueness of the Kronecker covariance MLE , 2020, The Annals of Statistics.
[31] I. Aban,et al. Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data , 2015, Statistics in medicine.
[32] Harrison H. Zhou,et al. Estimating Sparse Precision Matrix: Optimal Rates of Convergence and Adaptive Estimation , 2012, 1212.2882.
[33] Hongzhe Li,et al. Model selection and estimation in the matrix normal graphical model , 2012, J. Multivar. Anal..
[34] J. Friedman,et al. New Insights and Faster Computations for the Graphical Lasso , 2011 .
[35] Yunzhang Zhu,et al. Multiple matrix Gaussian graphs estimation , 2018, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[36] Tamara G. Kolda,et al. On Tensors, Sparsity, and Nonnegative Factorizations , 2011, SIAM J. Matrix Anal. Appl..
[37] Xin Zhang,et al. Covariate-Adjusted Tensor Classification in High Dimensions , 2018, Journal of the American Statistical Association.
[38] Bin Yu,et al. High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.
[39] Peter D. Hoff,et al. MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA. , 2014, The annals of applied statistics.
[40] R. Pfeiffer,et al. Least squares and maximum likelihood estimation of sufficient reductions in regressions with matrix-valued predictors , 2020, International Journal of Data Science and Analytics.