A Relaxed Kačanov iteration for the p-poisson problem

In this paper we introduce and analyze an iteratively re-weighted algorithm, that allows to approximate the weak solution of the p-Poisson problem for $$1 < p \leqslant 2$$ by iteratively solving a sequence of linear elliptic problems. The algorithm can be interpreted as a relaxed Kacanov iteration, as so-called in the specific literature of the numerical solution of quasi-linear equations. The main contribution of the paper is proving that the algorithm converges at least with an algebraic rate.

[1]  F. Smithies,et al.  Convex Functions and Orlicz Spaces , 1962, The Mathematical Gazette.

[2]  Lars Diening,et al.  Fractional estimates for non-differentiable elliptic systems with general growth , 2008 .

[3]  M. Fowler,et al.  Function Spaces , 2022 .

[4]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[5]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .

[6]  L. Diening,et al.  Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems , 2016, 1602.00119.

[7]  Carsten Ebmeyer,et al.  Mixed Boundary Value Problems for Nonlinear Elliptic Systems withp-Structure in Polyhedral Domains , 2002 .

[8]  Pedro Morin,et al.  Convergence of an adaptive Kačanov FEM for quasi-linear problems , 2010, 1006.3319.

[9]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[10]  Christian Kreuzer,et al.  Finite Element Approximation of Steady Flows of Incompressible Fluids with Implicit Power-Law-Like Rheology , 2012, SIAM J. Numer. Anal..

[11]  Christian Kreuzer,et al.  Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian Equation , 2008, SIAM J. Numer. Anal..

[12]  Massimo Fornasier,et al.  Low-rank Matrix Recovery via Iteratively Reweighted Least Squares Minimization , 2010, SIAM J. Optim..

[13]  M. Ruzicka,et al.  Non-Newtonian fluids and function spaces , 2007 .

[14]  Claudio Canuto,et al.  Adaptive Optimization of Convex Functionals in Banach Spaces , 2004, SIAM J. Numer. Anal..

[15]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[16]  D. Cruz-Uribe,et al.  Extrapolation from A∞ weights and applications , 2004 .

[17]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[18]  Andrea Braides Γ-convergence for beginners , 2002 .

[19]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[20]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[21]  Christian Kreuzer,et al.  Optimality of an adaptive finite element method for the p-Laplacian equation , 2012 .

[22]  Jaak Peetre Espaces d'interpolation et théorème de Soboleff , 1966 .

[23]  Weimin Han,et al.  The Kaccanov method for some nonlinear problems , 1997 .

[24]  P. Lindqvist Notes on the p-Laplace equation , 2006 .

[25]  V. Maz'ya,et al.  Global Lipschitz Regularity for a Class of Quasilinear Elliptic Equations , 2010 .

[26]  W. D. Evans,et al.  Sharp Estimates of the Embedding Constants for Besov Spaces , 2006 .