Variable Bandwidth Diffusion Kernels

[1]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[2]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[3]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[4]  D. W. Scott,et al.  On Locally Adaptive Density Estimation , 1996 .

[5]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[6]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[7]  Matthias Hein,et al.  Intrinsic dimensionality estimation of submanifolds in Rd , 2005, ICML.

[8]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[9]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[10]  Mikhail Belkin,et al.  Convergence of Laplacian Eigenmaps , 2006, NIPS.

[11]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[12]  A. Singer Spectral independent component analysis , 2006 .

[13]  A. Singer From graph to manifold Laplacian: The convergence rate , 2006 .

[14]  R. Coifman,et al.  Non-linear independent component analysis with diffusion maps , 2008 .

[15]  Ronald R. Coifman,et al.  Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems , 2008, Multiscale Model. Simul..

[16]  Mikhail Belkin,et al.  Consistency of spectral clustering , 2008, 0804.0678.

[17]  Ronald R. Coifman,et al.  Graph Laplacian Tomography From Unknown Random Projections , 2008, IEEE Transactions on Image Processing.

[18]  Amit Singer,et al.  Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps , 2009, Proceedings of the National Academy of Sciences.

[19]  Mauro Maggioni,et al.  Multiscale Estimation of Intrinsic Dimensionality of Data Sets , 2009, AAAI Fall Symposium: Manifold Learning and Its Applications.

[20]  Ling Huang,et al.  An Analysis of the Convergence of Graph Laplacians , 2010, ICML.

[21]  Andrew J. Majda,et al.  Time Series Reconstruction via Machine Learning: Revealing Decadal Variability and Intermittency in the North Pacific Sector of a Coupled Climate Model. , 2011, CIDU 2011.

[22]  R. Coifman,et al.  Anisotropic diffusion on sub-manifolds with application to Earth structure classification , 2012 .

[23]  A. Majda,et al.  Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability , 2012, Proceedings of the National Academy of Sciences.

[24]  Timothy D. Sauer,et al.  Time-Scale Separation from Diffusion-Mapped Delay Coordinates , 2013, SIAM J. Appl. Dyn. Syst..

[25]  T. Sauer,et al.  Local Kernels and the Geometric Structure of Data , 2014, 1407.1426.

[26]  John Harlim,et al.  Nonparametric Uncertainty Quantification for Stochastic Gradient Flows , 2014, SIAM/ASA J. Uncertain. Quantification.