A prototype hardware/software system has been developed and applied to the control of single wafer chemical-mechanical polishing (CMP) processes. The control methodology consists of experimental design to build response surface and linearized control models of the process, and the use of feedback control to change recipe parameters (machine settings) on a lot by lot basis. Acceptable regression models for a single wafer polishing tool and process were constructed for average removal rate and nonuniformity which are calculated based on film thickness measurement at nine points on 8-in blanket oxide wafers. For control, an exponentially weighted moving average model adaptation strategy was used, coupled to multivariate recipe generation incorporating user weights on the inputs and outputs, bounds on the input ranges, and discrete quantization in the machine settings. We found that this strategy successfully compensated for substantial drift in the uncontrolled tool's removal rate. It was also found that the equipment model generated during the experimental design was surprisingly robust; the same model was effective across more than one CMP tool, and over several months. We believe that the same methodology is applicable to patterned oxide wafers; work is in progress to demonstrate patterned wafer control, to improve the control, communication, and diagnosis components of the system, and to integrate real-time information into the run by run control of the process.