On Integral Class field theory for varieties over $p$-adic fields

. Let K be a finite extension of the p -adic numbers Q p with ring of integers O K , X a regular scheme, proper, flat, and geometrically irreducible over O K of dimension d , and X K its generic fiber. We show, under some assumptions on X K , that there is a reciprocity isomorphism of locally compact groups H 2 d − 1 ar ab W from the cohomology theory defined in [9] to an integral model π ab 1 ( X K ) W of the abelianized geometric fundamental groups π ab 1 ( X K ) geo . After removing the contribution from the base field, the map becomes an isomorphism of finitely generated abelian groups. The key ingredient is the duality result in [9].

[1]  Thomas H. Geisser,et al.  PONTRYAGIN DUALITY FOR VARIETIES OVER p-ADIC FIELDS , 2022, Journal of the Institute of Mathematics of Jussieu.

[2]  M. Flach,et al.  Weil-Étale Cohomology and Zeta-Values of Proper Regular Arithmetic Schemes , 2016, Documenta Mathematica.

[3]  J. Milne Addendum to “Values of zeta functions of varieties over finite fields” , 2015 .

[4]  P. Forré The kernel of the reciprocity map of varieties over local fields , 2015 .

[5]  Thomas H. Geisser,et al.  Tame Class Field Theory for Singular Varieties over Finite Fields , 2014, 1405.2752.

[6]  M. Flach,et al.  On the Weil-étale topos of regular arithmetic schemes , 2010, Documenta Mathematica.

[7]  S. Saito,et al.  Cohomological Hasse principle and motivic cohomology for arithmetic schemes , 2010, Publications mathématiques de l'IHÉS.

[8]  Thomas H. Geisser Arithmetic homology and an integral version of Kato's conjecture , 2007, 0704.1192.

[9]  M. Spitzweck,et al.  Homological algebra with locally compact abelian groups , 2005, math/0510345.

[10]  Thomas H. Geisser Duality via cycle complexes , 2006, math/0608456.

[11]  Takao Yamazaki Class field theory for a product of curves over a local field , 2006, math/0608464.

[12]  Kanetomo Sato,et al.  A finiteness theorem for zero-cycles over p-adic fields , 2006, math/0605165.

[13]  Kanetomo Sato Non-divisible cycles on surfaces over local fields , 2005 .

[14]  Thomas H. Geisser Arithmetic cohomology over finite fields and special values of ζ-functions , 2004 .

[15]  Teruyoshi Yoshida Finiteness theorems in the class field theory of varieties over local fields , 2003 .

[16]  S. Saito,et al.  Kato homology of arithmetic schemes and higher class field theory over local fields. , 2003 .

[17]  Tamás Szamuely Sur la theorie des corps de classes pour les varietes sur les corps p-adiques , 2000 .

[18]  Jean-Pierre Schneiders Quasi-Abelian categories and sheaves , 1999 .

[19]  Kazuya Kato A Hasse principle for two dimensional global fields. , 1986 .

[20]  S. Saito Class field theory for curves over local fields , 1985 .

[21]  Kazuya Kato,et al.  Unramified class field theory of arithmetical surfaces , 1983 .

[22]  A. Seidenberg THE HYPERPLANE SECTIONS OF NORMAL VARIETIES , 1950 .