On Integral Class field theory for varieties over $p$-adic fields
暂无分享,去创建一个
[1] Thomas H. Geisser,et al. PONTRYAGIN DUALITY FOR VARIETIES OVER p-ADIC FIELDS , 2022, Journal of the Institute of Mathematics of Jussieu.
[2] M. Flach,et al. Weil-Étale Cohomology and Zeta-Values of Proper Regular Arithmetic Schemes , 2016, Documenta Mathematica.
[3] J. Milne. Addendum to “Values of zeta functions of varieties over finite fields” , 2015 .
[4] P. Forré. The kernel of the reciprocity map of varieties over local fields , 2015 .
[5] Thomas H. Geisser,et al. Tame Class Field Theory for Singular Varieties over Finite Fields , 2014, 1405.2752.
[6] M. Flach,et al. On the Weil-étale topos of regular arithmetic schemes , 2010, Documenta Mathematica.
[7] S. Saito,et al. Cohomological Hasse principle and motivic cohomology for arithmetic schemes , 2010, Publications mathématiques de l'IHÉS.
[8] Thomas H. Geisser. Arithmetic homology and an integral version of Kato's conjecture , 2007, 0704.1192.
[9] M. Spitzweck,et al. Homological algebra with locally compact abelian groups , 2005, math/0510345.
[10] Thomas H. Geisser. Duality via cycle complexes , 2006, math/0608456.
[11] Takao Yamazaki. Class field theory for a product of curves over a local field , 2006, math/0608464.
[12] Kanetomo Sato,et al. A finiteness theorem for zero-cycles over p-adic fields , 2006, math/0605165.
[13] Kanetomo Sato. Non-divisible cycles on surfaces over local fields , 2005 .
[14] Thomas H. Geisser. Arithmetic cohomology over finite fields and special values of ζ-functions , 2004 .
[15] Teruyoshi Yoshida. Finiteness theorems in the class field theory of varieties over local fields , 2003 .
[16] S. Saito,et al. Kato homology of arithmetic schemes and higher class field theory over local fields. , 2003 .
[17] Tamás Szamuely. Sur la theorie des corps de classes pour les varietes sur les corps p-adiques , 2000 .
[18] Jean-Pierre Schneiders. Quasi-Abelian categories and sheaves , 1999 .
[19] Kazuya Kato. A Hasse principle for two dimensional global fields. , 1986 .
[20] S. Saito. Class field theory for curves over local fields , 1985 .
[21] Kazuya Kato,et al. Unramified class field theory of arithmetical surfaces , 1983 .
[22] A. Seidenberg. THE HYPERPLANE SECTIONS OF NORMAL VARIETIES , 1950 .