Bilateral Testing of Nano-scale Fault-Tolerant Circuits

As the technology enters the nano dimension, the inherent unreliability of nanoelectronics is making fault-tolerant architectures increasingly necessary in building nano systems. Because fault-tolerant hardwares help to mask the effects caused by increased levels of defects, testing the functionality of the chip together with the embedded fault-tolerance becomes a tremendous challenge. In this paper, a new bilateral testing framework for nano circuits is proposed, where multiple stuck-at faults across different modules in a triple module redundancy (TMR) architecture are considered. In addition, a new test generator is presented for the bilateral testing that takes into account the enormous number of bilateral stuck-at faults possible with new types of guidance in the search, and it can generate a set of vectors that can test the TMR-based nano circuit as a single entity. Experimental results reported for ISCAS’85 and ITC99 circuits demonstrate that the bilateral testing can help to capture many more defects which the single stuck-at fault misses.

[1]  A. Lloy,et al.  Advanced fault collapsing (logic circuits testing) , 1992 .

[2]  Charles E. Stroud,et al.  Design for testability and test generation for static redundancy system level fault-tolerant circuits , 1989, Proceedings. 'Meeting the Tests of Time'., International Test Conference.

[3]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[4]  Parag K. Lala,et al.  Fault tolerant and fault testable hardware design , 1985 .

[5]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[6]  Seth Copen Goldstein,et al.  Molecular electronics: from devices and interconnect to circuits and architecture , 2003, Proc. IEEE.

[7]  Sreejit Chakravarty,et al.  A scalable and efficient methodology to extract two node bridges from large industrial circuits , 2000, Proceedings International Test Conference 2000 (IEEE Cat. No.00CH37159).

[8]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[9]  Melvin A. Breuer,et al.  Digital Systems Testing & Testable Design , 1993 .

[10]  H. Al-Asaad,et al.  SIMULATION-BASED APPROXIMATE GLOBAL FAULT COLLAPSING , 2022 .

[11]  Vishwani D. Agrawal,et al.  A new algorithm for global fault collapsing into equivalence and dominance sets , 2002, Proceedings. International Test Conference.

[12]  Daniel P. Siewiorek Reliability Modeling of Compensating Module Failures in Majority Voted Redundancy , 1975, IEEE Transactions on Computers.

[13]  Edward J. McCluskey,et al.  Fault escapes in duplex systems , 2000, Proceedings 18th IEEE VLSI Test Symposium.

[14]  Aart J. de Geus Logic Synthesis and Optimization Benchmarks for the 1986 Design Automation Conference , 1986, DAC 1986.

[15]  P. K. Lala Self-Checking and Fault-Tolerant Digital Design , 1995 .

[16]  H. Fujiwara,et al.  ON THE ACCELERATION OF TEST GENERATION ALGORlTHMS , 1995, Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995, ' Highlights from Twenty-Five Years'..

[17]  Ramesh Karri,et al.  Nanofabric topologies and reconfiguration algorithms to support dynamically adaptive fault tolerance , 2006, 24th IEEE VLSI Test Symposium.

[18]  Irith Pomeranz,et al.  Theorems for efficient identification of indistinguishable fault pairs in synchronous sequential circuits , 2002, Proceedings 20th IEEE VLSI Test Symposium (VTS 2002).

[19]  Hideo Fujiwara,et al.  On the Acceleration of Test Generation Algorithms , 1983, IEEE Transactions on Computers.

[20]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[21]  Joseph L. Mundy,et al.  Optimizing noise-immune nanoscale circuits using principles of Markov random fields , 2006, GLSVLSI '06.

[22]  Udo Mahlstedt,et al.  DIATEST: a fast diagnostic test pattern generator for combinational circuits , 1991, 1991 IEEE International Conference on Computer-Aided Design Digest of Technical Papers.

[23]  Ibrahim N. Hajj,et al.  A Hierarchical Bridging Fault Extraction Approach For VLSI Circuit Layouts , 1997, Proceedings of Technical Papers. International Symposium on VLSI Technology, Systems, and Applications.

[24]  Niraj K. Jha,et al.  Test Generation for Combinational Quantum Cellular Automata (QCA) Circuits , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[25]  L. H. Goldstein,et al.  Controllability/observability analysis of digital circuits , 1978 .

[26]  Vamsi Boppana,et al.  Diagnostic fault equivalence identification using redundancy information and structural analysis , 1996, Proceedings International Test Conference 1996. Test and Design Validity.

[27]  Krishnendu Chakrabarty,et al.  Built-in self-test of molecular electronics-based nanofabrics , 2005, European Test Symposium (ETS'05).

[28]  Jie Han Fault-tolerant architectures for nanoelectronic and quantum devices , 2004 .

[29]  D. M. H. Walker,et al.  FedEx - a fast bridging fault extractor , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).

[30]  Antonio Lioy Advanced fault collapsing (logic circuits testing) , 1992, IEEE Design & Test of Computers.

[31]  Prabhakar Goel,et al.  An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Circuits , 1981, IEEE Transactions on Computers.