A framework for understanding the functions of biomolecular condensates across scales

[1]  R. Pappu,et al.  Proteins with prion-like domains can form viscoelastic condensates that enable membrane remodeling and endocytosis , 2021 .

[2]  M. Rosen,et al.  Phase Separation Can Increase Enzyme Activity by Concentration and Molecular Organization , 2020, bioRxiv.

[3]  Joshua A. Riback,et al.  The nucleolus as a multiphase liquid condensate , 2020, Nature Reviews Molecular Cell Biology.

[4]  J. Gross,et al.  Biomolecular condensates amplify mRNA decapping by coupling protein interactions with conformational changes in Dcp1/Dcp2 , 2020, bioRxiv.

[5]  R. Parker,et al.  A quantitative inventory of yeast P body proteins reveals principles of composition and specificity , 2020, eLife.

[6]  Patrick M. McCall,et al.  Partitioning of cancer therapeutics in nuclear condensates , 2020, Science.

[7]  Joshua A. Riback,et al.  Composition-dependent thermodynamics of intracellular phase separation , 2020, Nature.

[8]  Alan M. Moses,et al.  Condensation of Ded1p Promotes a Translational Switch from Housekeeping to Stress Protein Production , 2020, Cell.

[9]  D. Eisenberg,et al.  Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils , 2020, bioRxiv.

[10]  S. Benkovic,et al.  Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells , 2020, Science.

[11]  Joshua A. Riback,et al.  Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization , 2020, Cell.

[12]  Hong Joo Kim,et al.  G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules , 2020, Cell.

[13]  R. Pappu,et al.  RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation , 2020, Cell.

[14]  P. Arosio,et al.  Acceleration of an Enzymatic Reaction in Liquid Phase Separated Compartments Based on Intrinsically Disordered Protein Domains , 2020, ChemSystemsChem.

[15]  K. Rippe,et al.  Mouse Heterochromatin Adopts Digital Compaction States without Showing Hallmarks of HP1-Driven Liquid-Liquid Phase Separation , 2020, Molecular cell.

[16]  P. Tompa,et al.  A guide to regulation of the formation of biomolecular condensates , 2020, The FEBS journal.

[17]  P. Sorensen,et al.  Ewing Sarcoma , 2020, Sarcomas.

[18]  R. Pappu,et al.  Valence and patterning of aromatic residues determine the phase behavior of prion-like domains , 2020, Science.

[19]  T. Ando,et al.  Phase separation organizes the site of autophagosome formation , 2020, Nature.

[20]  S. Marqusee,et al.  Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation , 2020, Nature Structural & Molecular Biology.

[21]  Y. Fujioka,et al.  Liquidity Is a Critical Determinant for Selective Autophagy of Protein Condensates. , 2020, Molecular cell.

[22]  E. L. Guenther,et al.  Inhibition of synucleinopathic seeding by rationally designed inhibitors , 2020, eLife.

[23]  P. Sorger,et al.  HSF1 phase transition mediates stress adaptation and cell fate decisions , 2019, Nature Cell Biology.

[24]  J. Rothman,et al.  Liquid–liquid phase separation of the Golgi matrix protein GM130 , 2019, FEBS letters.

[25]  Pilong Li,et al.  Mitotic Implantation of the Transcription Factor Prospero via Phase Separation Drives Terminal Neuronal Differentiation. , 2019, Developmental cell.

[26]  Ling-Ling Chen,et al.  Nascent Pre-rRNA Sorting via Phase Separation Drives the Assembly of Dense Fibrillar Components in the Human Nucleolus. , 2019, Molecular cell.

[27]  S. Alberti,et al.  Liquid-Liquid Phase Separation in Disease. , 2019, Annual review of genetics.

[28]  Xiaofeng Zhou,et al.  Selective sequestration of signaling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus , 2019, Nature Microbiology.

[29]  C. Allis,et al.  Histone Modifications Regulate Chromatin Compartmentalization by Contributing to a Phase Separation Mechanism. , 2019, Molecular cell.

[30]  J. Söding,et al.  Mechanisms for Active Regulation of Biomolecular Condensates. , 2019, Trends in cell biology.

[31]  Christopher M. Jakobson,et al.  Widespread Prion-Based Control of Growth and Differentiation Strategies in Saccharomyces cerevisiae. , 2019, Molecular cell.

[32]  V. Vandelinder,et al.  The liquid state of FG-nucleoporins mimics permeability barrier properties of nuclear pore complexes , 2019, The Journal of cell biology.

[33]  David M. Garcia,et al.  A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program. , 2019, Molecular cell.

[34]  Kyung S. Lee,et al.  Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis , 2019, Nature Communications.

[35]  R. Tjian,et al.  Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences , 2019, Genes & development.

[36]  A. Burlingame,et al.  HP1 reshapes the nucleosome core to promote phase separation of heterochromatin , 2019, Nature.

[37]  C. Heisenberg,et al.  Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow , 2019, Cell.

[38]  Natalie M. Clark,et al.  Nucleo-cytoplasmic Partitioning of ARF Proteins Controls Auxin Responses in Arabidopsis thaliana. , 2019, Molecular cell.

[39]  D. Gerlich,et al.  Organization of Chromatin by Intrinsic and Regulated Phase Separation , 2019, Cell.

[40]  M. Degano,et al.  The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase , 2019, Scientific Reports.

[41]  N. Hannett,et al.  Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. , 2019, Molecular cell.

[42]  N. Ashgriz,et al.  DNA repair by Rad52 liquid droplets , 2019, Nature Communications.

[43]  P. Vallotton,et al.  DEAD-box ATPases are global regulators of phase-separated organelles , 2019, Nature.

[44]  P. Sehgal,et al.  Human Antiviral Protein MxA Forms Novel Metastable Membraneless Cytoplasmic Condensates Exhibiting Rapid Reversible Tonicity-Driven Phase Transitions , 2019, Journal of Virology.

[45]  Michael S. Fernandopulle,et al.  RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether , 2019, Cell.

[46]  S. V. King,et al.  DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome , 2019, Nature.

[47]  L. Kay,et al.  Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation , 2019, Science.

[48]  W. Baumeister,et al.  Stress- and ubiquitylation-dependent phase separation of the proteasome , 2020, Nature.

[49]  F. d’Adda di Fagagna,et al.  Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage response factors , 2019, Nature Cell Biology.

[50]  Marina Feric,et al.  Controlling the material properties and rRNA processing function of the nucleolus using light , 2019, Proceedings of the National Academy of Sciences.

[51]  C. Samuel,et al.  Measles Virus Forms Inclusion Bodies with Properties of Liquid Organelles , 2019, Journal of Virology.

[52]  S. Crosson,et al.  A Carbonic Anhydrase Pseudogene Sensitizes Select Brucella Lineages to Low CO2 Tension , 2019, bioRxiv.

[53]  S. Richard,et al.  The regulation, functions and clinical relevance of arginine methylation , 2019, Nature Reviews Molecular Cell Biology.

[54]  J. Guan,et al.  Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules , 2019, Cell.

[55]  N. Hannett,et al.  Pol II phosphorylation regulates a switch between transcriptional and splicing condensates , 2019, Nature.

[56]  J. Cox,et al.  The nucleolus functions as a phase-separated protein quality control compartment , 2019, Science.

[57]  M. Altmeyer,et al.  Phase separation of 53BP1 determines liquid‐like behavior of DNA repair compartments , 2019, The EMBO journal.

[58]  D. Eisenberg,et al.  Structure-based inhibitors of amyloid beta core suggest a common interface with tau , 2019, eLife.

[59]  W. Möbius,et al.  A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes , 2019, Science.

[60]  Sabine Petry,et al.  Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation , 2019, Nature Communications.

[61]  T. Wunder,et al.  CO2‐fixing liquid droplets: Towards a dissection of the microalgal pyrenoid , 2019, Traffic.

[62]  Ethan K. Scott,et al.  Optical trapping in vivo: theory, practice, and applications , 2019, Nanophotonics.

[63]  D. Pastré,et al.  PARP-1 Activation Directs FUS to DNA Damage Sites to Form PARG-Reversible Compartments Enriched in Damaged DNA. , 2019, Cell reports.

[64]  Z. Wang,et al.  Phase Separation, Transition, and Autophagic Degradation of Proteins in Development and Pathogenesis. , 2019, Trends in cell biology.

[65]  J. Taylor,et al.  Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease , 2019, Nature Reviews Neurology.

[66]  M. Botchan,et al.  A new class of disordered elements controls DNA replication through initiator self-assembly , 2019, bioRxiv.

[67]  B. Tu,et al.  Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain , 2019, Cell.

[68]  Rohit V. Pappu,et al.  LASSI: A lattice model for simulating phase transitions of multivalent proteins , 2019, bioRxiv.

[69]  A. Honigmann,et al.  Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions , 2019, Cell.

[70]  K. Takeuchi Discovery Stories of RET Fusions in Lung Cancer: A Mini-Review , 2019, Front. Physiol..

[71]  D. Drummond,et al.  Cellular sensing by phase separation: Using the process, not just the products , 2019, The Journal of Biological Chemistry.

[72]  M. Babu,et al.  The fitness cost and benefit of phase‐separated protein deposits , 2019, bioRxiv.

[73]  J. Groves,et al.  A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS , 2019, Science.

[74]  M. Rosen,et al.  Stoichiometry controls activity of phase-separated clusters of actin signaling proteins , 2019, Science.

[75]  D. Eisenberg,et al.  Structure-Based Peptide Inhibitor Design of Amyloid-β Aggregation , 2019, Front. Mol. Neurosci..

[76]  S. Du,et al.  RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase Separation. , 2019, Molecular cell.

[77]  T. Mittag,et al.  Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates , 2019, Cell.

[78]  F. Hartl,et al.  Rubisco condensate formation by CcmM in β-carboxysome biogenesis , 2019, Nature.

[79]  F. Jülicher,et al.  Phase separation provides a mechanism to reduce noise in cells , 2019, bioRxiv.

[80]  F. C. Schoemaker,et al.  Measurement of the Curvature-Dependent Surface Tension in Nucleating Colloidal Liquids. , 2018, Physical review letters.

[81]  F. Hartl,et al.  Rubisco condensate formation by CcmM in beta-carboxysome biogenesis , 2018 .

[82]  Chunaram Choudhary,et al.  Acetylation of intrinsically disordered regions regulates phase separation , 2018, Nature Chemical Biology.

[83]  Lucas Pelkmans,et al.  A Systems-Level Study Reveals Regulators of Membrane-less Organelles in Human Cells. , 2018, Molecular cell.

[84]  N. Hannett,et al.  Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains , 2018, Cell.

[85]  Hoi-Yeung Li,et al.  The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger , 2018, Nature Communications.

[86]  J. Lerner,et al.  A changing paradigm of transcriptional memory propagation through mitosis , 2018, Nature Reviews Molecular Cell Biology.

[87]  C. Mayr,et al.  A Membraneless Organelle Associated with the Endoplasmic Reticulum Enables 3′UTR-Mediated Protein-Protein Interactions , 2018, Cell.

[88]  R. Pappu,et al.  Advances in Understanding Stimulus-Responsive Phase Behavior of Intrinsically Disordered Protein Polymers. , 2018, Journal of molecular biology.

[89]  Ned S. Wingreen,et al.  Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome , 2018, Cell.

[90]  Nicholas A. Sinnott-Armstrong,et al.  Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells , 2018, Science.

[91]  K. Lindorff-Larsen,et al.  Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments. , 2018, Molecular cell.

[92]  Anthony A. Hyman,et al.  Phase Transitions Drive the Formation of Vesicular Stomatitis Virus Replication Compartments , 2018, mBio.

[93]  Gangming Zhang,et al.  mTOR Regulates Phase Separation of PGL Granules to Modulate Their Autophagic Degradation , 2018, Cell.

[94]  Jared M. Schrader,et al.  α-proteobacterial RNA degradosomes assemble liquid-liquid phase separated RNP bodies , 2018, bioRxiv.

[95]  P. Cramer,et al.  RNA polymerase II clustering through carboxy-terminal domain phase separation , 2018, Nature Structural & Molecular Biology.

[96]  P. De Camilli,et al.  A liquid phase of synapsin and lipid vesicles , 2018, Science.

[97]  Mingjie Zhang,et al.  Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity , 2018, Cell.

[98]  R. Tjian,et al.  Imaging dynamic and selective low-complexity domain interactions that control gene transcription , 2018, Science.

[99]  Charles H. Li,et al.  Mediator and RNA polymerase II clusters associate in transcription-dependent condensates , 2018, Science.

[100]  Daniel S. Day,et al.  Coactivator condensation at super-enhancers links phase separation and gene control , 2018, Science.

[101]  Melissa M. Harrison,et al.  Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos , 2018, bioRxiv.

[102]  Zhijian J. Chen,et al.  DNA-induced liquid phase condensation of cGAS activates innate immune signaling , 2018, Science.

[103]  M. Selbach,et al.  Kinase-controlled phase transition of membraneless organelles in mitosis , 2018, Nature.

[104]  J. Groves,et al.  mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding , 2018, Cell.

[105]  R. Pappu,et al.  A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins , 2018, Cell.

[106]  X. Darzacq,et al.  Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II , 2018, Nature.

[107]  Angelo Vulpiani,et al.  Thermodynamics and Statistical Mechanics of Small Systems , 2018, Entropy.

[108]  John R. James,et al.  Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density , 2018, Science Signaling.

[109]  I. MacRae,et al.  Phase Transitions in the Assembly and Function of Human miRISC , 2018, Cell.

[110]  Gang Wan,et al.  Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance , 2018, Nature.

[111]  C. Holt,et al.  FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions , 2018, Cell.

[112]  Seung Joong Kim,et al.  Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites , 2018, Cell.

[113]  L. Rice,et al.  Microtubule dynamics: an interplay of biochemistry and mechanics , 2018, Nature Reviews Molecular Cell Biology.

[114]  M. Simons,et al.  Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation , 2018, Cell.

[115]  Julie C. Sung,et al.  Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains , 2018, Cell.

[116]  A. Hyman,et al.  Controlling compartmentalization by non-membrane-bound organelles , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[117]  Joshua M. Stuart,et al.  Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. , 2018, Cell.

[118]  J. Taylor,et al.  Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions. , 2018, Molecules and Cells.

[119]  Hue Sun Chan,et al.  Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates. , 2018, Biochemistry.

[120]  Pilong Li,et al.  Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation , 2018, Cell Research.

[121]  Christopher B. Stanley,et al.  Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation , 2018, Nature Communications.

[122]  C. Brangwynne,et al.  Physical principles of intracellular organization via active and passive phase transitions , 2018, Reports on progress in physics. Physical Society.

[123]  Hong Lin,et al.  Pi-Pi contacts are an overlooked protein feature relevant to phase separation , 2018, eLife.

[124]  S. Grill,et al.  Non-invasive perturbations of intracellular flow reveal physical principles of cell organization , 2018, Nature Cell Biology.

[125]  Anne-Claude Gingras,et al.  High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. , 2018, Molecular cell.

[126]  Gene W. Yeo,et al.  Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules , 2018, Cell.

[127]  C. Sachse,et al.  p62 filaments capture and present ubiquitinated cargos for autophagy , 2018, The EMBO journal.

[128]  R. Pappu,et al.  Phase separation of a yeast prion protein promotes cellular fitness , 2018, Science.

[129]  Yuejia Huang,et al.  Aurora A activation in mitosis promoted by BuGZ , 2018, The Journal of cell biology.

[130]  Amy S. Gladfelter,et al.  mRNA structure determines specificity of a polyQ-driven phase separation , 2017, Science.

[131]  R. Parker,et al.  Numerous interactions act redundantly to assemble a tunable size of P bodies in Saccharomyces cerevisiae , 2017, Proceedings of the National Academy of Sciences.

[132]  Jean-Baptiste Morlot,et al.  P-Body Purification Reveals the Condensation of Repressed mRNA Regulons. , 2017, Molecular cell.

[133]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[134]  C. Brangwynne,et al.  Liquid phase condensation in cell physiology and disease , 2017, Science.

[135]  Luis Kuhn Cuellar,et al.  The Eukaryotic CO2-Concentrating Organelle Is Liquid-like and Exhibits Dynamic Reorganization , 2017, Cell.

[136]  M. Rivera,et al.  Cancer-Specific Retargeting of BAF Complexes by a Prion-like Domain , 2017, Cell.

[137]  J. Ellenberg,et al.  Correlative live and super-resolution imaging reveals the dynamic structure of replication domains , 2017, bioRxiv.

[138]  Guilhem Chalancon,et al.  Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins , 2017, Nature Structural &Molecular Biology.

[139]  Nicolas L. Fawzi,et al.  Phosphorylation of the FUS low‐complexity domain disrupts phase separation, aggregation, and toxicity , 2017, The EMBO journal.

[140]  Douglas L. Black,et al.  Splicing Activation by Rbfox Requires Self-Aggregation through Its Tyrosine-Rich Domain , 2017, Cell.

[141]  Ming-Tzo Wei,et al.  Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. , 2017, Nature chemistry.

[142]  Mustafa Mir,et al.  Phase separation drives heterochromatin domain formation , 2017, Nature.

[143]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[144]  A. Hyman,et al.  The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin , 2017, Cell.

[145]  R. Vale,et al.  RNA Phase Transitions in Repeat Expansion Disorders , 2017, Nature.

[146]  Mustafa Mir,et al.  Dense Bicoid hubs accentuate binding along the morphogen gradient , 2017, bioRxiv.

[147]  Joshua A. Riback,et al.  Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response , 2017, Cell.

[148]  Jeffrey J. Nirschl,et al.  Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons , 2017, Proceedings of the National Academy of Sciences.

[149]  Anthony A. Hyman,et al.  Biomolecular condensates: organizers of cellular biochemistry , 2017, Nature Reviews Molecular Cell Biology.

[150]  E. Wieschaus,et al.  Independent active and thermodynamic processes govern the nucleolus assembly in vivo , 2017, Proceedings of the National Academy of Sciences.

[151]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[152]  Anthony A. Hyman,et al.  Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism , 2016, Cell.

[153]  R. Huganir,et al.  Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity , 2016, Cell.

[154]  A. Hyman,et al.  Amyloid-like Self-Assembly of a Cellular Compartment , 2016, Cell.

[155]  R. Parker,et al.  Compositional Control of Phase-Separated Cellular Bodies , 2016, Cell.

[156]  Sune M. Christensen,et al.  Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS , 2016, Proceedings of the National Academy of Sciences.

[157]  Diana M. Mitrea,et al.  Coexisting Liquid Phases Underlie Nucleolar Subcompartments , 2016, Cell.

[158]  D. J. McKay,et al.  Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis , 2016, The Journal of cell biology.

[159]  Timothy D Craggs,et al.  Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. , 2016, Nature chemistry.

[160]  Ronald D. Vale,et al.  Phase separation of signaling molecules promotes T cell receptor signal transduction , 2016, Science.

[161]  J. Lieberman,et al.  G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits , 2016, The Journal of cell biology.

[162]  Jinwei Zhu,et al.  Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling , 2016, Nature Reviews Neuroscience.

[163]  L. Pelkmans,et al.  Passive Noise Filtering by Cellular Compartmentalization , 2016, Cell.

[164]  Anthony Barsic,et al.  ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure , 2016, Cell.

[165]  I. Ford,et al.  Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics. , 2015, The Journal of chemical physics.

[166]  Peter Tompa,et al.  Polymer physics of intracellular phase transitions , 2015, Nature Physics.

[167]  Yuejia Huang,et al.  Phase Transition of Spindle-Associated Protein Regulate Spindle Apparatus Assembly , 2015, Cell.

[168]  Marco Y. Hein,et al.  A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation , 2015, Cell.

[169]  J. Lukas,et al.  Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose) , 2015, Nature Communications.

[170]  Timothy D. Craggs,et al.  Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles , 2015, Molecular cell.

[171]  E. Betzig,et al.  Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans , 2014, eLife.

[172]  E. Holzbaur,et al.  Axonal Transport: Cargo-Specific Mechanisms of Motility and Regulation , 2014, Neuron.

[173]  Sudeep Banjade,et al.  Phase transitions of multivalent proteins can promote clustering of membrane receptors , 2014, eLife.

[174]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[175]  M Madan Babu,et al.  Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems , 2014, Nature Structural &Molecular Biology.

[176]  Arup K Chakraborty,et al.  Insights into the initiation of TCR signaling , 2014, Nature Immunology.

[177]  S. Maeda,et al.  In vitro and in vivo analyses of the role of the carboxysomal β-type carbonic anhydrase of the cyanobacterium Synechococcuselongatus in carboxylation of ribulose-1,5-bisphosphate , 2014, Photosynthesis Research.

[178]  Zhijian J. Chen,et al.  The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. , 2014, Cell reports.

[179]  Takahide Yokoi,et al.  NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies , 2014, Molecular biology of the cell.

[180]  C. Holt,et al.  The Central Dogma Decentralized: New Perspectives on RNA Function and Local Translation in Neurons , 2013, Neuron.

[181]  R. Parker,et al.  Eukaryotic Stress Granules Are Cleared by Autophagy and Cdc48/VCP Function , 2013, Cell.

[182]  P. Garrity,et al.  Sensing temperature , 2013, Current Biology.

[183]  Zhijian J. Chen,et al.  Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA , 2013, Science.

[184]  Masayasu Oie,et al.  Both G3BP1 and G3BP2 contribute to stress granule formation , 2013, Genes to cells : devoted to molecular & cellular mechanisms.

[185]  M. Babu,et al.  Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation , 2012, Cell reports.

[186]  T. Südhof The Presynaptic Active Zone , 2012, Neuron.

[187]  G. Ruvkun,et al.  MUT-16 promotes formation of perinuclear mutator foci required for RNA silencing in the C. elegans germline. , 2012, Genes & development.

[188]  Jimin Pei,et al.  Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels , 2012, Cell.

[189]  Ken A. Dill,et al.  Molecular driving forces : statistical thermodynamics in biology, chemistry, physics, and nanoscience , 2012 .

[190]  Paul S. Russo,et al.  Phase Transitions in the Assembly of MultiValent Signaling Proteins , 2016 .

[191]  M. Rubinstein,et al.  Mobility of Nonsticky Nanoparticles in Polymer Liquids. , 2011, Macromolecules.

[192]  Astrid Magenau,et al.  Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events , 2011, Nature Immunology.

[193]  P. Heřman,et al.  In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies , 2011, Molecular biology of the cell.

[194]  Mike Fainzilber,et al.  Subcellular Communication Through RNA Transport and Localized Protein Synthesis , 2010, Traffic.

[195]  M. Elowitz,et al.  Functional roles for noise in genetic circuits , 2010, Nature.

[196]  S. K. Zaidi,et al.  Mitotic bookmarking of genes: a novel dimension to epigenetic control , 2010, Nature Reviews Genetics.

[197]  H. Vehkamäki,et al.  A thermodynamically consistent determination of surface tension of small Lennard-Jones clusters from simulation and theory. , 2010, The Journal of chemical physics.

[198]  Jeremy M. Stark,et al.  53BP1 Inhibits Homologous Recombination in Brca1-Deficient Cells by Blocking Resection of DNA Breaks , 2010, Cell.

[199]  P. Anderson,et al.  Chapter 4 Regulation of Translation by Stress Granules and Processing Bodies , 2009, Progress in Molecular Biology and Translational Science.

[200]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[201]  A. Hyman,et al.  Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation , 2009, Science.

[202]  G. Cannon,et al.  CO2 Fixation Kinetics of Halothiobacillus neapolitanus Mutant Carboxysomes Lacking Carbonic Anhydrase Suggest the Shell Acts as a Diffusional Barrier for CO2* , 2008, Journal of Biological Chemistry.

[203]  I. Andersson,et al.  Structure and function of Rubisco. , 2008, Plant physiology and biochemistry : PPB.

[204]  John Kuriyan,et al.  The origin of protein interactions and allostery in colocalization , 2007, Nature.

[205]  Isabelle Behm-Ansmant,et al.  P-Body Formation Is a Consequence, Not the Cause, of RNA-Mediated Gene Silencing , 2007, Molecular and Cellular Biology.

[206]  Tom Misteli,et al.  Cell biology: Chromosome territories , 2007, Nature.

[207]  T. Rana,et al.  Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54 , 2006, PLoS biology.

[208]  Ronald D. Vale,et al.  Single-Molecule Microscopy Reveals Plasma Membrane Microdomains Created by Protein-Protein Networks that Exclude or Trap Signaling Molecules in T Cells , 2005, Cell.

[209]  J. Raven,et al.  CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. , 2005, Annual review of plant biology.

[210]  R. Parker,et al.  Processing bodies require RNA for assembly and contain nontranslating mRNAs. , 2005, RNA.

[211]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[212]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[213]  P. Cook The organization of replication and transcription. , 1999, Science.

[214]  A. Kaplan,et al.  CO2 CONCENTRATING MECHANISMS IN PHOTOSYNTHETIC MICROORGANISMS. , 1999, Annual review of plant physiology and plant molecular biology.

[215]  B. Nelms,et al.  hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks , 1997, Molecular and cellular biology.

[216]  D. Amaral,et al.  A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus , 1995, The Journal of comparative neurology.

[217]  D. Ward,et al.  Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[218]  Dieter Ebert,et al.  Experimental evolution. , 2012, Trends in ecology & evolution.

[219]  S. Lindquist,et al.  Selective translation and degradation of heat-shock messenger RNAs in Drosophila. , 1990, Enzyme.