All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium
暂无分享,去创建一个
Toshiharu Saiki | T. Saiki | T. Uchiyama | T. Uchiyama | T. Hira | T. Homma | Kenta Kuwamura | Yuya Kihara | Yuya Kihara | Kenta Kuwamura | T. Hira | T. Homma
[1] N. Zheludev,et al. Phase-change chalcogenide glass metamaterial , 2009, 0912.4288.
[2] Ququan Wang,et al. Plasmonic interferences in two-dimensional stacked double-disk array , 2011 .
[3] Andreas Hohenau,et al. Active plasmonic devices with anisotropic optical response: a step toward active polarizer. , 2009, Nano letters.
[4] Lei Zhang,et al. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial , 2013 .
[5] T. Saiki,et al. Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology , 2013 .
[6] Naomi J. Halas,et al. A plasmonic Fano switch. , 2012, Nano letters.
[7] R. W. Christy,et al. Optical Constants of the Noble Metals , 1972 .
[8] Kannatassen Appavoo,et al. Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy. , 2012, Nano letters.
[9] Qi-Huo Wei,et al. Tunable and augmented plasmon resonances of Au∕SiO2∕Au nanodisks , 2006 .
[10] Chih-Yu Chao,et al. Electrically controlled surface plasmon resonance frequency of gold nanorods , 2006 .
[11] Paul S Weiss,et al. Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling. , 2011, Nano letters.
[12] Toshiharu Saiki,et al. Ultrafast amorphization in Ge(10)Sb(2)Te(13) thin film induced by single femtosecond laser pulse. , 2010, Applied optics.
[13] Nikolay I. Zheludev,et al. Chalcogenide glasses in active plasmonics , 2010 .
[14] M. Wuttig,et al. Phase-change materials for rewriteable data storage. , 2007, Nature materials.
[15] P. Alsing,et al. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. , 2005, Nano letters.
[16] S. Maier,et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. , 2013, Optics express.
[17] Thomas A. Klar,et al. Electrically controlled light scattering with single metal nanoparticles , 2002 .
[18] Davon W. Ferrara,et al. Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide , 2008 .
[19] S. Maier,et al. Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide. , 2010, Optics letters.
[20] A. Ikehata,et al. Oxide Surface Plasmon Resonance for a New Sensing Platform in the Near‐Infrared Range , 2013 .
[21] M. S. Abrishamian,et al. Magnetic-field enhancement in gold nanosandwiches. , 2006, Optics express.
[22] Garnett W. Bryant,et al. Metal‐nanoparticle plasmonics , 2008 .
[23] Peter Nordlander,et al. Fano resonances in plasmonic nanoparticle aggregates. , 2009, The journal of physical chemistry. A.
[24] O. Martin,et al. Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. , 2008, Optics express.
[25] H. Atwater,et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.
[26] J. Ghilane,et al. Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching. , 2010, Journal of the American Chemical Society.
[27] Mikael Käll,et al. Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators. , 2007, Small.
[28] N. Zheludev,et al. Metamaterial electro-optic switch of nanoscale thickness , 2010 .
[29] Matthias Wuttig,et al. Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.
[30] H. Bernien,et al. Active terahertz nanoantennas based on VO2 phase transition. , 2010, Nano letters.