Wind-Tunnel Setup for Investigations of Normal Shock Wave/Boundary Layer Interaction Control

The use of wind-tunnel setup for study of normal shock wave/boundary layer interaction control, was investigated. The rectangular working section that was 114 mm wide, and 178 mm high at the straight downstream of the nozzle was used. The incoming airflow was partitioned by a plate of 6 mm thickness to overcome the problem of shock wave instability. The height of the upper and lower passage was maintained at 91 and 122 mm respectively. The incoming boundary layer thickness was 5.7 mm and the Reynolds number based on boundary-layer displacement thickness was approximately 25,000. It was observed that shock can be located above 3-D bump and large ?-shock structure whose front shock leg starts at the onset of control cab be analyzed. Result shows that wind-tunnel setup can be used to test various types of shock control at positions where conventional setups are unable to hold shock system due to shock instability.