From C-Believed Propositions to the Causal Calculator

Default rules, unlike inference rules of classical logic, allow us to derive a new conclusion only when it does not conflict with the other available information. The best known example is the so-called commonsense law of inertia: in the absence of information to the contrary, properties of the world can be presumed to be the same as they were in the past. Making the idea of commonsense inertia precise is known as the frame problem [Shanahan 1997]. Default reasoning is nonmonotonic, in the sense that we may be forced to retract a conclusion derived using a default when additional information becomes available. The idea of a default first attracted the attention of AI researchers in the 1970s. Developing a formal semantics of defaults turned out to be a difficult task. For instance, the attempt to describe commonsense inertia in terms of circumscription outlined in [McCarthy 1986] was unsatisfactory, as we learned from the Yale Shooting example [Hanks and McDermott 1987]. In this note, we trace the line of work on the semantics of defaults that started with Judea Pearl’s 1988 paper on the difference between “E-believed” and “Cbelieved” propositions. That paper has led other researchers first to the invention of several theories of nonmonotonic causal reasoning, then to designing action languages C and C+, and then to the creation of the Causal Calculator—a software system for automated reasoning about action and change.

[1]  Dov M. Gabbay,et al.  What Is Negation as Failure? , 2012, Logic Programs, Norms and Action.

[2]  Joseph Y. Halpern,et al.  Actual causation and the art of modeling , 2011, ArXiv.

[3]  J. Pearl,et al.  Causal inference , 2011, Twenty-one Mental Models That Can Change Policing.

[4]  Russell A. Poldrack,et al.  Six problems for causal inference from fMRI , 2010, NeuroImage.

[5]  Arthur Gretton,et al.  Nonlinear directed acyclic structure learning with weakly additive noise models , 2009, NIPS.

[6]  Z. Jane Wang,et al.  Controlling the False Discovery Rate of the Association/Causality Structure Learned with the PC Algorithm , 2009, J. Mach. Learn. Res..

[7]  Snootfull not at all.... , 2009 .

[8]  P. Spirtes,et al.  MARKOV EQUIVALENCE FOR ANCESTRAL GRAPHS , 2009, 0908.3605.

[9]  Enrico Giunchiglia,et al.  Formal Specification and Automatic Analysis of Business Processes under Authorization Constraints: An Action-Based Approach , 2009, TrustBus.

[10]  James M. Robins,et al.  Testing Edges by Truncations , 2009, IJCAI.

[11]  Aapo Hyvärinen,et al.  On the Identifiability of the Post-Nonlinear Causal Model , 2009, UAI.

[12]  J. Pearl,et al.  Effects of Treatment on the Treated: Identification and Generalization , 2009, UAI.

[13]  Aapo Hyvärinen,et al.  Estimation of linear non-Gaussian acyclic models for latent factors , 2009, Neurocomputing.

[14]  Alexander Artikis,et al.  Specifying norm-governed computational societies , 2009, TOCL.

[15]  Steffen L. Lauritzen,et al.  Graphical models for causal inference , 2009 .

[16]  David Danks,et al.  Integrating Locally Learned Causal Structures with Overlapping Variables , 2008, NIPS.

[17]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.

[18]  J. Pearl,et al.  Bounds on Direct Effects in the Presence of Confounded Intermediate Variables , 2008, Biometrics.

[19]  Patrik O. Hoyer,et al.  Discovering Cyclic Causal Models by Independent Components Analysis , 2008, UAI.

[20]  Aapo Hyvärinen,et al.  Causal discovery of linear acyclic models with arbitrary distributions , 2008, UAI.

[21]  Clark Glymour,et al.  Search for Additive Nonlinear Time Series Causal Models , 2008, J. Mach. Learn. Res..

[22]  Judea Pearl,et al.  Complete Identification Methods for the Causal Hierarchy , 2008, J. Mach. Learn. Res..

[23]  Xiaohai Sun Causal inference from statistical data , 2008 .

[24]  Roland R. Ramsahai,et al.  Causal inference with instruments and other supplementary variables , 2008 .

[25]  Bernhard Schölkopf,et al.  Kernel Measures of Conditional Dependence , 2007, NIPS.

[26]  Judea Pearl,et al.  What Counterfactuals Can Be Tested , 2007, UAI.

[27]  P. Bühlmann,et al.  Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm , 2005, J. Mach. Learn. Res..

[28]  Aapo Hyvärinen,et al.  A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..

[29]  Richard Scheines,et al.  Learning the Structure of Linear Latent Variable Models , 2006, J. Mach. Learn. Res..

[30]  Peter Spirtes,et al.  Graphical Models for the Identification of Causal Structures in Multivariate Time Series Models , 2006, JCIS.

[31]  Marco Valtorta,et al.  Identifiability in Causal Bayesian Networks: A Sound and Complete Algorithm , 2006, AAAI.

[32]  Judea Pearl,et al.  Identification of Joint Interventional Distributions in Recursive Semi-Markovian Causal Models , 2006, AAAI.

[33]  Wolfgang Spohn,et al.  Causation: An Alternative , 2006, The British Journal for the Philosophy of Science.

[34]  Patrik O. Hoyer,et al.  Estimation of linear, non-gaussian causal models in the presence of confounding latent variables , 2006, Probabilistic Graphical Models.

[35]  Jon Dorbolo,et al.  Intuition Pumps , 2006, Minds and Machines.

[36]  Antonio Forcina Causal effects in the presence of non compliance: a latent variable interpretation , 2006 .

[37]  E. Erosheva Comparing Latent Structures of the Grade of Membership, Rasch, and Latent Class Models , 2005 .

[38]  James E. Matheson,et al.  Describing and Valuing Interventions That Observe or Control Decision Situations , 2005, Decis. Anal..

[39]  Ronald A. Howard,et al.  Influence Diagrams , 2005, Decis. Anal..

[40]  Richard Scheines,et al.  Generalized measurement models , 2005 .

[41]  Joohyung Lee,et al.  Automated Reasoning about Actions , 2005 .

[42]  J. Robins,et al.  Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models , 2004 .

[43]  Jin Tian,et al.  Identifying Conditional Causal Effects , 2004, UAI.

[44]  Enrico Giunchiglia,et al.  Nonmonotonic causal theories , 2004, Artif. Intell..

[45]  Varol Akman,et al.  Representing the Zoo World and the Traffic World in the language of the Causal Calculator , 2004, Artif. Intell..

[46]  J. Woodward Making Things Happen: A Theory of Causal Explanation , 2003 .

[47]  Ned Hall,et al.  Causation and counterfactuals , 2004 .

[48]  K. Hoover,et al.  Searching for the Causal Structure of a Vector Autoregression , 2003 .

[49]  Constantin F. Aliferis,et al.  HITON: A Novel Markov Blanket Algorithm for Optimal Variable Selection , 2003, AMIA.

[50]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[51]  Jin Tian,et al.  On the Testable Implications of Causal Models with Hidden Variables , 2002, UAI.

[52]  Jin Tian,et al.  A general identification condition for causal effects , 2002, AAAI/IAAI.

[53]  Blai Bonet,et al.  Instrumentality Tests Revisited , 2001, UAI.

[54]  Christopher R. Hitchcock The Intransitivity of Causation Revealed In Equations and Graphs , 2001 .

[55]  Ned Hall Two Concepts of Causation , 2001 .

[56]  P. Spirtes,et al.  Causation, Prediction, and Search, 2nd Edition , 2001 .

[57]  Armando Tacchella,et al.  Getting to the airport: the oldest planning problem in AI , 2000 .

[58]  Joseph Y. Halpern,et al.  Causes and explanations: A structural-model approach , 2000 .

[59]  Mtw,et al.  Computation, causation, and discovery , 2000 .

[60]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[61]  Vladimir Lifschitz,et al.  Missionaries and Cannibals in the Causal Calculator , 2000, KR.

[62]  D. Rubin,et al.  Assessing the effect of an influenza vaccine in an encouragement design. , 2000, Biostatistics.

[63]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[64]  Manabu Kuroki,et al.  IDENTIFIABILITY CRITERIA FOR CAUSAL EFFECTS OF JOINT INTERVENTIONS , 1999 .

[65]  Hudson Turner,et al.  A Logic of Universal Causation , 1999, Artif. Intell..

[66]  Ross D. Shachter Efficient Value of Information Computation , 1999, UAI.

[67]  Christopher Meek,et al.  Quantifier Elimination for Statistical Problems , 1999, UAI.

[68]  Enrico Giunchiglia,et al.  An Action Language Based on Causal Explanation: Preliminary Report , 1998, AAAI/IAAI.

[69]  Clark Glymour,et al.  What Went Wrong? Reflections on Science by Observation and the Bell Curve , 1998, Philosophy of Science.

[70]  J. Pearl,et al.  Bounds on Treatment Effects from Studies with Imperfect Compliance , 1997 .

[71]  N. McCain Causality in commonsense reasoning about actions , 1997 .

[72]  David Maxwell Chickering,et al.  A Bayesian Approach to Learning Bayesian Networks with Local Structure , 1997, UAI.

[73]  Hudson Turner,et al.  Causal Theories of Action and Change , 1997, AAAI/IAAI.

[74]  D. Madigan,et al.  A characterization of Markov equivalence classes for acyclic digraphs , 1997 .

[75]  Norman R. Swanson,et al.  Impulse Response Functions Based on a Causal Approach to Residual Orthogonalization in Vector Autoregressions , 1997 .

[76]  Murray Shanahan Solving the frame problem - a mathematical investigation of the common sense law of inertia , 1997 .

[77]  James M. Robins,et al.  Causal Inference from Complex Longitudinal Data , 1997 .

[78]  David Maxwell Chickering,et al.  A Clinician's Tool for Analyzing Non-Compliance , 1996, AAAI/IAAI, Vol. 2.

[79]  Thomas S. Richardson,et al.  A Discovery Algorithm for Directed Cyclic Graphs , 1996, UAI.

[80]  Rina Dechter,et al.  Identifying Independencies in Causal Graphs with Feedback , 1996, UAI.

[81]  Mark J. Gierl,et al.  A Confirmatory Factor Analysis of the Test Anxeety Inventory Using Canadian High School Students , 1996 .

[82]  J. Pearl Causal diagrams for empirical research , 1995 .

[83]  Fangzhen Lin,et al.  Embracing Causality in Specifying the Indirect Effects of Actions , 1995, IJCAI.

[84]  Peter Spirtes,et al.  Directed Cyclic Graphical Representations of Feedback Models , 1995, UAI.

[85]  James M. Robins,et al.  Probabilistic evaluation of sequential plans from causal models with hidden variables , 1995, UAI.

[86]  Christopher Meek,et al.  Causal inference and causal explanation with background knowledge , 1995, UAI.

[87]  David Maxwell Chickering,et al.  A Transformational Characterization of Equivalent Bayesian Network Structures , 1995, UAI.

[88]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[89]  Ross D. Shachter,et al.  Decision-Theoretic Foundations for Causal Reasoning , 1995, J. Artif. Intell. Res..

[90]  C. Glymour,et al.  Conditioning and Intervening , 1994, The British Journal for the Philosophy of Science.

[91]  Judea Pearl,et al.  Probabilistic Evaluation of Counterfactual Queries , 1994, AAAI.

[92]  Judea Pearl,et al.  Counterfactual Probabilities: Computational Methods, Bounds and Applications , 1994, UAI.

[93]  Mark S. Kamlet,et al.  Regressor Diagnostics for the Errors-in-Variables Model - An Application to the Health Effects of Pollution , 1993 .

[94]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[95]  C J McDonald,et al.  Effects of computer reminders for influenza vaccination on morbidity during influenza epidemics. , 1992, M.D. computing : computers in medical practice.

[96]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[97]  James J. Heckman,et al.  Randomization and Social Policy Evaluation , 1991 .

[98]  P. Spirtes,et al.  An Algorithm for Fast Recovery of Sparse Causal Graphs , 1991 .

[99]  Wolfgang Spohn Direct and indirect causes , 1990 .

[100]  Steffen L. Lauritzen,et al.  Independence properties of directed markov fields , 1990, Networks.

[101]  Hector Geffner,et al.  Causal Theories for Nonmonotonic Reasoning , 1990, AAAI.

[102]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[103]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[104]  C. Manski Nonparametric Bounds on Treatment Effects , 1989 .

[105]  Judea Pearl,et al.  Embracing Causality in Default Reasoning , 1988, Artif. Intell..

[106]  S. Klepper Regressor diagnostics for the classical errors-in-variables model , 1988 .

[107]  Drew McDermott,et al.  Nonmonotonic Logic and Temporal Projection , 1987, Artif. Intell..

[108]  Richard Scheines,et al.  Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling , 1987 .

[109]  Vladimir Lifschitz,et al.  Formal Theories of Action (Preliminary Report) , 1987, IJCAI.

[110]  Brian A. Haugh,et al.  Simple Causal Minimizations for Temporal Persistence and Projection , 1987, AAAI.

[111]  J. Robins A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods. , 1987, Journal of chronic diseases.

[112]  Paul M. Horvitz Fear of Failing , 1987 .

[113]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[114]  Ross D. Shachter,et al.  A backwards view for assessment , 1986, UAI.

[115]  J. Robins A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect , 1986 .

[116]  H. Needleman,et al.  Lead and IQ scores: a reanalysis. , 1985, Science.

[117]  John McCarthy,et al.  Applications of Circumscription to Formalizing Common Sense Knowledge , 1987, NMR.

[118]  Kirk R. Williams,et al.  Dependence, Political Exclusion, and Government Repression: Some Cross-National Evidence , 1984 .

[119]  Ronald G. Stansfield,et al.  Sociological Methodology 1982 , 1983 .

[120]  Wolfgang Spohn,et al.  Eine Theorie der Kausalität , 1983 .

[121]  T. Speed,et al.  Structural Analysis of Multivariate Data: A Review , 1982 .

[122]  N. Cartwright Causal Laws and Effective Strategies , 1979 .

[123]  A. Leviton,et al.  Deficits in psychologic and classroom performance of children with elevated dentine lead levels. , 1979, The New England journal of medicine.

[124]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[125]  S. Fienberg,et al.  The Geometry of a Two by Two Contingency Table , 1970 .

[126]  P. Suppes A Probabilistic Theory Of Causality , 1970 .

[127]  W. H. Sewell,et al.  Social Class, Parental Encouragement, and Educational Aspirations , 1968, American Journal of Sociology.

[128]  Ronald A. Howard,et al.  Value of Information Lotteries , 1967, IEEE Trans. Syst. Sci. Cybern..

[129]  D. M. Ellis,et al.  Applied Regression Analysis , 1968 .

[130]  H. Harman Modern factor analysis , 1961 .

[131]  H. Reichenbach,et al.  The Direction of Time , 1959 .

[132]  Illtyd Trethowan Causality , 1938 .

[133]  C. Spearman General intelligence Objectively Determined and Measured , 1904 .