Global Padé Approximations of the Generalized Mittag-Leffler Function and its Inverse

Abstract This paper proposes a global Padé approximation of the generalized Mittag-Leffler function Eα,β(−x) with x ∈ [0,+∞). This uniform approximation can account for both the Taylor series for small arguments and asymptotic series for large arguments. Based on the complete monotonicity of the function Eα,β(−x), we work out the global Padé approximation [1/2] for the particular cases {0 < α < 1, β > α}, {0 < α = β < 1}, and {α = 1, β > 1}, respectively. Moreover, these approximations are inverted to yield a global Padé approximation of the inverse generalized Mittag- Leffler function −Lα,β(x) with x ∈ (0, 1/Γ(β)]. We also provide several examples with selected values α and β to compute the relative error from the approximations. Finally, we point out the possible applications using our established approximations in the ordinary and partial time-fractional differential equations in the sense of Riemann-Liouville.

[1]  Colin Atkinson,et al.  Rational Solutions for the Time-Fractional Diffusion Equation , 2011, SIAM J. Appl. Math..

[2]  Kenneth S. Miller,et al.  A Note on the Complete Monotonicity of the Generalized Mittag-Leffler Function , 1997 .

[3]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[4]  Francesco Mainardi,et al.  On Mittag-Leffler-type functions in fractional evolution processes , 2000 .

[6]  Roberto Garrappa,et al.  Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions , 2015, SIAM J. Numer. Anal..

[7]  R. K. Saxena,et al.  Generalized mittag-leffler function and generalized fractional calculus operators , 2004 .

[8]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[9]  Александр Павлович Старовойтов,et al.  Аппроксимации Паде функций Миттаг-Леффлера@@@Padé approximants of the Mittag-Leffler functions , 2007 .

[10]  Francesco Mainardi,et al.  ON SOME PROPERTIES OF THE MITTAG-LEFFLER FUNCTION E α ( − t α ) , COMPLETELY MONOTONE FOR t > 0 WITH 0 < α < 1 , 2014 .

[11]  Jigen Peng,et al.  A note on property of the Mittag-Leffler function , 2010 .

[12]  Y. Chen,et al.  Fractional Processes and Fractional-Order Signal Processing , 2012 .

[13]  Francesco Mainardi On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$ , 2014 .

[14]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[15]  A. P. Starovoitov,et al.  Padé approximants of the Mittag-Leffler functions , 2007 .

[16]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[17]  Arak M. Mathai,et al.  Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..

[18]  R. Gorenflo,et al.  Time-fractional derivatives in relaxation processes: a tutorial survey , 2008, 0801.4914.

[19]  Serge Winitzki,et al.  Uniform Approximations for Transcendental Functions , 2003, ICCSA.

[20]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[21]  Trenton R. Ensley,et al.  Properties of the Mittag-Leffler Function , 2007 .

[22]  Rudolf Hilfer,et al.  Computation of the generalized Mittag-Leffler function and its inverse in the complex plane , 2006 .

[23]  Rudolf Hilfer,et al.  Numerical Algorithm for Calculating the Generalized Mittag-Leffler Function , 2008, SIAM J. Numer. Anal..

[24]  A. Wiman Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .

[25]  Harry Pollard,et al.  The completely monotonic character of the Mittag-Leffler function $E_a \left( { - x} \right)$ , 1948 .

[26]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[27]  L. P. Kok,et al.  Table errata: Higher transcendental functions, Vol. III [McGraw-Hill, New York, 1955; MR 16, 586] by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi , 1983 .

[28]  Megumi Saigo,et al.  On mittag-leffler type function, fractional calculas operators and solutions of integral equations , 1996 .