Global Padé Approximations of the Generalized Mittag-Leffler Function and its Inverse
暂无分享,去创建一个
[1] Colin Atkinson,et al. Rational Solutions for the Time-Fractional Diffusion Equation , 2011, SIAM J. Appl. Math..
[2] Kenneth S. Miller,et al. A Note on the Complete Monotonicity of the Generalized Mittag-Leffler Function , 1997 .
[3] T. Kaczorek,et al. Fractional Differential Equations , 2015 .
[4] Francesco Mainardi,et al. On Mittag-Leffler-type functions in fractional evolution processes , 2000 .
[6] Roberto Garrappa,et al. Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions , 2015, SIAM J. Numer. Anal..
[7] R. K. Saxena,et al. Generalized mittag-leffler function and generalized fractional calculus operators , 2004 .
[8] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[9] Александр Павлович Старовойтов,et al. Аппроксимации Паде функций Миттаг-Леффлера@@@Padé approximants of the Mittag-Leffler functions , 2007 .
[10] Francesco Mainardi,et al. ON SOME PROPERTIES OF THE MITTAG-LEFFLER FUNCTION E α ( − t α ) , COMPLETELY MONOTONE FOR t > 0 WITH 0 < α < 1 , 2014 .
[11] Jigen Peng,et al. A note on property of the Mittag-Leffler function , 2010 .
[12] Y. Chen,et al. Fractional Processes and Fractional-Order Signal Processing , 2012 .
[13] Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$ , 2014 .
[14] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .
[15] A. P. Starovoitov,et al. Padé approximants of the Mittag-Leffler functions , 2007 .
[16] Yury F. Luchko,et al. Algorithms for the fractional calculus: A selection of numerical methods , 2005 .
[17] Arak M. Mathai,et al. Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..
[18] R. Gorenflo,et al. Time-fractional derivatives in relaxation processes: a tutorial survey , 2008, 0801.4914.
[19] Serge Winitzki,et al. Uniform Approximations for Transcendental Functions , 2003, ICCSA.
[20] P. A. P. Moran,et al. An introduction to probability theory , 1968 .
[21] Trenton R. Ensley,et al. Properties of the Mittag-Leffler Function , 2007 .
[22] Rudolf Hilfer,et al. Computation of the generalized Mittag-Leffler function and its inverse in the complex plane , 2006 .
[23] Rudolf Hilfer,et al. Numerical Algorithm for Calculating the Generalized Mittag-Leffler Function , 2008, SIAM J. Numer. Anal..
[24] A. Wiman. Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .
[25] Harry Pollard,et al. The completely monotonic character of the Mittag-Leffler function $E_a \left( { - x} \right)$ , 1948 .
[26] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[27] L. P. Kok,et al. Table errata: Higher transcendental functions, Vol. III [McGraw-Hill, New York, 1955; MR 16, 586] by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi , 1983 .
[28] Megumi Saigo,et al. On mittag-leffler type function, fractional calculas operators and solutions of integral equations , 1996 .