Fractional Order Numerical Differentiation with B-Spline Functions

Smoothing noisy data with spline functions is well known in approximation theory. Smoothing splines have been used to deal with the problem of numerical differentiation. In this paper, we extend this method to estimate the fractional derivatives of a smooth signal from its discrete noisy data. We begin with finding a smoothing spline by solving the Tikhonov regularization problem. Then, we propose a fractional order differentiator by calculating the fractional derivative of the obtained smoothing spline. Numerical results are given to show the efficiency of the proposed method in comparison with some existing methods.

[1]  M. Fliess,et al.  A revised look at numerical differentiation with an application to nonlinear feedback control , 2007, 2007 Mediterranean Conference on Control & Automation.

[2]  J. Grizzle,et al.  On numerical differentiation algorithms for nonlinear estimation , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[3]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[4]  Per-Olof Persson,et al.  Smoothing by Savitzky-Golay and Legendre Filters , 2003, Mathematical Systems Theory in Biology, Communications, Computation, and Finance.

[5]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[6]  P. Massopust Interpolation and Approximation with Splines and Fractals , 2010 .

[7]  J. Sabatier,et al.  Crone control of a nonlinear hydraulic actuator , 2002 .

[8]  J. Sabatier,et al.  From fractal robustness to the CRONE approach , 1998 .

[9]  Olivier Gibaru,et al.  Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment , 2013, IEEE Transactions on Automatic Control.

[10]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[11]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[12]  Olivier Gibaru,et al.  Fractional order differentiation by integration with Jacobi polynomials , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[13]  M. Fliess,et al.  An algebraic framework for linear identification , 2003 .

[14]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[15]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[16]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[17]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[18]  Xinxiu Li,et al.  Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method , 2012 .

[19]  Michel Fliess,et al.  Analyse non standard du bruit , 2006, ArXiv.

[20]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[21]  Olivier Gibaru,et al.  Convergence Rate of the Causal Jacobi Derivative Estimator , 2010, Curves and Surfaces.

[22]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[23]  S. Diop,et al.  A numerical procedure for filtering and efficient high-order signal differentiation , 2004 .

[24]  Alain Oustaloup,et al.  Fractional differentiation for edge detection , 2003, Signal Process..

[25]  Daniel Lesnic,et al.  Heuristic regularization methods for numerical differentiation , 2012, Comput. Math. Appl..

[26]  Olivier Gibaru,et al.  Differentiation by integration with Jacobi polynomials , 2011, J. Comput. Appl. Math..

[27]  Jian Bai,et al.  Fractional-Order Anisotropic Diffusion for Image Denoising , 2007, IEEE Transactions on Image Processing.

[28]  A. Charef,et al.  Digital fractional order operators for R-wave detection in electrocardiogram signal , 2009 .

[29]  R. Schafer,et al.  What Is a Savitzky-Golay Filter? , 2022 .

[30]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[31]  Jian Li,et al.  A New FDTD Formulation for Wave Propagation in Biological Media With Cole–Cole Model , 2006, IEEE Microwave and Wireless Components Letters.

[32]  Olivier Gibaru,et al.  Error analysis of Jacobi derivative estimators for noisy signals , 2011, Numerical Algorithms.

[33]  Per Christian Hansen Regularizational tools - A MATLAB package for analysis and solution of discrete ill-posed problems: Version 3.0 for MATLAB 5.2 , 1998 .

[34]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[35]  Michel Fliess Critique du rapport signal à bruit en communications numériques -- Questioning the signal to noise ratio in digital communications , 2008, ArXiv.

[36]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[37]  Yangquan Chen,et al.  Digital Fractional Order Savitzky-Golay Differentiator , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[38]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.