A Scalable Architecture for MPEG-4 Wavelet Quantization

Wavelet-based image compression has been adopted in MPEG-4 for visual texture coding. All wavelet quantization schemes in MPEG-4—Single Quantization (SQ), Multiple Quantization (MQ) and Bi-level Quantization—use Embedded Zero Tree (EZT) coding followed by an adaptive arithmetic coder for the compression and quantization of a wavelet image. This paper presents the OZONE chip, a dedicated hardware coprocessor for EZT and arithmetic coding. Realized in a 0.5 μm CMOS technology and operating at 32 MHz, the EZT coder is capable of processing up to 25.6 Mega pixel-bitplanes per second. This is equivalent to the lossless compression of 31.6 8-bit grayscale CIF images (352 × 288) per second. The adaptive arithmetic coder processes up to 10 Mbit per second. The combination of the performance of the EZT coder and the arithmetic coder allows the OZONE to perform visual-lossless compression of more than 30 CIF images per second. Due to its novel and scalable architecture, parallel operation of multiple OZONEs is supported. The OZONE functionality is demonstrated on a PC-based compression system.

[1]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  H. De Man,et al.  Global communication and memory optimizing transformations for low power signal processing systems , 1994, Proceedings of 1994 IEEE Workshop on VLSI Signal Processing.

[3]  B. Vanhoof,et al.  A scalable architecture for MPEG-4 embedded zero tree coding , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[4]  Gauthier Lafruit,et al.  The Local Wavelet Transform: a memory-efficient, high-speed architecture optimized to a Region-Oriented Zero-Tree coder , 2000, Integr. Comput. Aided Eng..

[5]  Jer Min Jou,et al.  The design of an adaptive on-line binary arithmetic-coding chip , 1998 .

[6]  Hugo De Man,et al.  Loop transformation methodology for fixed-rate video, image and telecom processing applications , 1994, Proceedings of IEEE International Conference on Application Specific Array Processors (ASSAP'94).

[7]  Jeffrey Scott Vitter,et al.  Arithmetic coding for data compression , 1994 .

[8]  Teresa H. Meng,et al.  Portable video-on-demand in wireless communication , 1995, Proc. IEEE.

[9]  Gauthier Lafruit,et al.  Implementation of a scalable MPEG-4 wavelet-based visual texture compression system , 1999, DAC '99.

[10]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[11]  Patrick Schaumont,et al.  A programming environment for the design of complex high speed ASICs , 1998, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).

[12]  Francky Catthoor,et al.  Custom Memory Management Methodology: Exploration of Memory Organisation for Embedded Multimedia System Design , 1998 .

[13]  Mary Jane Irwin,et al.  VLSI architectures for the discrete wavelet transform , 1995 .

[14]  Mary Jane Irwin,et al.  Discrete wavelet transforms in VLSI , 1992, [1992] Proceedings of the International Conference on Application Specific Array Processors.

[15]  Gauthier Lafruit,et al.  Design of an Arithmetic coder for a Hardware Wavelet compression engine , 1998 .

[16]  J. M. Shapiro A fast technique for identifying zerotrees in the EZW algorithm , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[17]  Linh Huynh Multiplication and division free adaptive arithmetic coding techniques for bi-level images , 1994, Proceedings of IEEE Data Compression Conference (DCC'94).

[18]  Gauthier Lafruit,et al.  Optimal memory organization for scalable texture codecs in MPEG-4 , 1999, IEEE Trans. Circuits Syst. Video Technol..

[19]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[20]  Ian H. Witten,et al.  Text Compression , 1990, 125 Problems in Text Algorithms.