Mechanisms of radiation damage to Sc/Si multilayer mirrors under EUV laser irradiation

Specific structural changes in Sc/Si multilayer mirrors irradiated with extreme ultraviolet (EUV) laser single pulses (λ = 46.9 nm) at near damage threshold fluences (0.04–0.23 J cm −2 ) are analysed. We have identified melting of surface layers as the basic degradation mechanism for the mirrors. Both heat generation during silicide formation and low heat conduction of the layered system significantly decreases the degradation threshold of Sc/Si multilayer mirrors compared with bulk materials. The results are relevant to the use of the multilayer mirrors for shaping and directing the intense beams produced by the new generation of coherent EUV sources.

[1]  P. J. Viccaro,et al.  Performance of multilayers in intense synchrotron x‐ray beams , 1989 .

[2]  J. Rocca,et al.  Repetitively pulsed X-ray laser operating on the 3p — 3s transition of the Ne-like argon in a capillary discharge , 2003 .

[3]  S. I. Sagitov,et al.  Thermal stability of soft x-ray Mo-Si and MoSi(2)-Si multilayer mirrors. , 1993, Applied optics.

[4]  Jorge J. Rocca,et al.  Demonstration of a High Average Power Tabletop Soft X-Ray Laser , 1998 .

[5]  T. Borca-Tasciuc,et al.  Thermal Conductivity and Heat Transfer in Superlattices , 1997 .

[6]  E. N. Zubarev,et al.  Damage to extreme-ultraviolet Sc/Si multilayer mirrors exposed to intense 46.9-nm laser pulses. , 2004, Optics letters.

[7]  Zuimin Jiang,et al.  Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/C , 1989 .

[8]  G. Vradis,et al.  Thermal Conductivity of Thin Metallic Films , 1994 .

[9]  H. Takenaka,et al.  Heat resistance of Mo/Si, MoSi2/Si, and Mo5Si3/Si multilayer soft x‐ray mirrors , 1995 .

[10]  Ryszard S. Romaniuk,et al.  Operation of a free-electron laser from the extreme ultraviolet to the water window , 2007 .

[11]  R. Glang,et al.  Handbook of Thin Film Technology , 1970 .

[12]  Eric Ziegler,et al.  Stability of tungsten/carbon and tungsten/silicon multilayer x‐ray mirrors under thermal annealing and x‐radiation exposure , 1991 .

[13]  Jorge J. Rocca,et al.  Generation of millijoule-level soft-x-ray laser pulses at a 4-Hz repetition rate in a highly saturated tabletop capillary discharge amplifier. , 1999 .

[14]  A. Luft,et al.  A study of thermal and mechanical effects on materials induced by pulsed laser drilling , 1996 .

[15]  J. Kortright,et al.  Multilayer-coated mirrors as power filters in synchrotron radiation beamlines , 1987 .

[16]  V. R. Sidorko,et al.  Thermodynamic properties of scandium, lanthanum, neodymium and gadolinium silicides and germanides , 1992 .

[18]  Less Common Metals , 1952 .

[19]  Jorge J. Rocca,et al.  Structural transformations in Sc/Si multilayers irradiated by EUV lasers , 2007, SPIE Optical Engineering + Applications.

[20]  J. Bain,et al.  A model of heat transfer in STM-based magnetic recording on CoNi/Pt multilayers , 2006 .

[21]  J. Andre,et al.  Damages to B4C/W multilayer mirrors by intense soft x‐ray bursts , 1996 .

[22]  W. M. Clift,et al.  Improved reflectance and stability of Mo-Si multilayers , 2002 .

[23]  E. Weckert,et al.  Review of third and next generation synchrotron light sources , 2005 .

[24]  Robert Sinclair,et al.  The preparation of cross‐section specimens for transmission electron microscopy , 1984 .

[25]  Richard A. London,et al.  Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength , 2007 .

[26]  Multilayer X-ray optics , 2002 .

[27]  Libor Juha,et al.  Structure modifications in silicon irradiated by ultra-short pulses of XUV free electron laser , 2004 .

[28]  J. Rocca,et al.  Focusing of a tabletop soft-x-ray laser beam and laser ablation. , 1999, Optics letters.

[29]  J. P. Hayes,et al.  Boron-Carbide Barrier Layers in Scandium-Silicon Multilayers , 2004 .

[30]  Libor Juha,et al.  Total reflection amorphous carbon mirrors for vacuum ultraviolet free electron lasers , 2004 .

[31]  H. Takenaka,et al.  Thermal stability of Mo/C/Si/C multilayer soft X-ray mirrors , 1996 .

[32]  M. Ravet,et al.  Thermal evolution of X/C multilayers (with X=W, Ni, or SiWSi): A systematic study , 1990 .

[33]  Anatoli I. Fedorenko,et al.  Structure of Sc/Si multilayer mirrors in as-deposited state and after annealing , 2001 .

[34]  Kazuo Sano,et al.  Heat stability of Mo/Si multilayers inserted with silicon oxide layers , 2002, SPIE Optics + Photonics.

[35]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[36]  David C. Eder,et al.  Investigation of Damage to Multilayer Optics in X-Ray Laser Cavities: W/C, WRe/C, WC/C, Stainless-Steel/C, and Cr3C2/C Mirrors. , 1992, Journal of X-ray science and technology.

[37]  C. Grigoropoulos,et al.  Thermal conductivity of amorphous silicon thin films , 2002 .

[38]  D. Kohler,et al.  Pulsed x‐ray induced damage to metal and multilayer mirrors , 1985 .

[39]  William J. Chancellor,et al.  Soil Physical Properties , 1994 .

[40]  Francoise Bridou,et al.  Performances and stability of Sc/Si multilayers with barrier layers for wavelengths around 46 nm , 2005, SPIE Optical Systems Design.

[41]  R. Sinclair,et al.  High-resolution and in situ tem studies of annealing of Ti-Si multilayers , 1988 .

[42]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[43]  Ivan K. Schuller,et al.  Stability of multilayers for synchrotron optics , 1986 .

[44]  V. V. Kondratenko,et al.  Interlayer transition zones in Mo/Si superlattices , 2002 .

[45]  B. Rus,et al.  XUV-laser induced ablation of PMMA with nano-, pico-, and femtosecond pulses , 2005 .

[46]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[47]  N. Ceglio,et al.  Thermally induced structural modification of Mo‐Si multilayers , 1990 .

[48]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[49]  M. Yanagihara,et al.  Stability of sputtered Mo/BN, W/BN, Mo/B4C, and W/B4C soft X-ray multilayers under exposure to multipole-wiggler radiation , 1993 .

[50]  P. Nicolosi,et al.  First operation of a free-electron laser generating GW power radiation at 32 nm wavelength , 2006 .

[51]  Gang Chen,et al.  Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures , 1997 .

[52]  Weihua Wang,et al.  Interdiffusion in nanometer-scale multilayers investigated by in situ low-angle x-ray diffraction , 1999 .

[53]  M. Wall,et al.  Structural stability of heat‐treated W/C and W/B4C multilayers , 1990 .

[54]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[55]  A V Vinogradov,et al.  High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35-50nm. , 1998, Optics letters.

[56]  R Barchewitz,et al.  Experimental study and simulation of the damage induced to various multilayer interferential mirrors by soft x-ray plasma-laser sources. , 1997, Journal of X-ray science and technology.

[57]  Libor Juha,et al.  Subnanometer-scale measurements of the interaction of ultrafast soft x-ray free-electron-laser pulses with matter. , 2006, Physical review letters.

[58]  Yegor A. Bugayev,et al.  Study of fast diffusion species in Sc/Si multilayers by W-based marker analysis , 2006 .