Domain decomposition methods for compressed sensing
暂无分享,去创建一个
Massimo Fornasier | Carola-Bibiane Schonlieb | Andreas Langer | M. Fornasier | C. Schonlieb | A. Langer
[1] Gjlles Aubert,et al. Mathematical problems in image processing , 2001 .
[2] L. Vese. A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .
[3] Carola-Bibiane Schönlieb,et al. Subspace Correction Methods for Total Variation and 1-Minimization , 2007, SIAM J. Numer. Anal..
[4] M. Fornasier. Domain decomposition methods for linear inverse problems with sparsity constraints , 2007 .
[5] Gilles Aubert,et al. Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..
[6] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[7] Pierre Kornprobst,et al. Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.
[8] I. Daubechies,et al. Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.
[9] Wotao Yin,et al. An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..
[10] P. Lions,et al. Image recovery via total variation minimization and related problems , 1997 .
[11] I. Daubechies,et al. Iteratively solving linear inverse problems under general convex constraints , 2007 .
[12] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[13] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[14] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[15] M. Nikolova. An Algorithm for Total Variation Minimization and Applications , 2004 .