Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity
暂无分享,去创建一个
[1] Åke Björck,et al. Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.
[2] Stephen M. Robinson,et al. Strongly Regular Generalized Equations , 1980, Math. Oper. Res..
[3] M. Kojima. Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .
[4] S. M. Robinson. Analysis and computation of fixed points , 1980 .
[5] S. M. Robinson. Some continuity properties of polyhedral multifunctions , 1981 .
[6] B. Korte,et al. Mathematical Programming the State of the Art: Bonn 1982 , 1983 .
[7] S. M. Robinson. Local structure of feasible sets in nonlinear programming , 1983 .
[8] K. Jittorntrum. Solution point differentiability without strict complementarity in nonlinear programming , 1984 .
[9] S. M. Robinson. Local Structure of Feasible Sets in Nonlinear Programming - Part II. Nondegeneracy , 1984 .
[10] Jean-Pierre Aubin,et al. Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..
[11] Anthony V. Fiacco,et al. Mathematical programming study 21 , 1985, Mathematical programming.
[12] G. Laroque,et al. Lipschitz properties of solutions in mathematical programming , 1987 .