Non-aligned Drawings of Planar Graphs

A non-aligned drawing of a graph is a drawing where no two vertices are in the same row or column. Auber et al. showed that not all planar graphs have a non-aligned planar straight-line drawing in the \(n\times n\)-grid. They also showed that such a drawing exists if up to \(n-3\) edges may have a bend.

[1]  Therese C. Biedl,et al.  The (3, 1)-ordering for 4-connected planar triangulations , 2015, J. Graph Algorithms Appl..

[2]  Michael Kaufmann,et al.  Journal of Graph Algorithms and Applications Embedding Vertices at Points: Few Bends Suffice for Planar Graphs , 2022 .

[3]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[4]  Jean Cardinal,et al.  Arc diagrams, flip distances, and Hamiltonian triangulations , 2015, Comput. Geom..

[5]  Prosenjit Bose,et al.  Making triangulations 4-connected using flips , 2011, CCCG.

[6]  Henk Meijer,et al.  Rectangle of Influence Drawings of Graphs without Filled 3-Cycles , 1999, Graph Drawing.

[7]  Giuseppe Liotta,et al.  The rectangle of influence drawability problem , 1996, Comput. Geom..

[8]  Paul Dorbec,et al.  Rook-Drawing for Plane Graphs , 2015, GD.

[9]  Michael Kaufmann,et al.  Upward-rightward planar drawings , 2014, IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications.

[10]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[11]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[12]  Takao Nishizeki,et al.  Open Rectangle-of-Influence Drawings of Inner Triangulated Plane Graphs , 2006, Graph Drawing.

[13]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[14]  M. Chrobak,et al.  Convex Grid Drawings of 3-Connected Planar Graphs , 1997, Int. J. Comput. Geom. Appl..

[15]  Goos Kant,et al.  A More Compact Visibility Representation , 1997, Int. J. Comput. Geom. Appl..

[16]  Prosenjit Bose,et al.  Efficient algorithms for Petersen's matching theorem , 1999, SODA '99.

[17]  Paul Dorbec,et al.  Rook-drawings of Plane Graphs , 2017, J. Graph Algorithms Appl..

[18]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[19]  Vida Dujmovic,et al.  Drawing Planar Graphs with Many Collinear Vertices , 2016, GD.

[20]  D. Dolev,et al.  Planar Embedding of Planar Graphs , 1983 .

[21]  Goos Kant,et al.  On Triangulating Planar Graphs under the Four-Connectivity Constraint , 1994, Algorithmica.

[22]  Therese C. Biedl,et al.  Planar Open Rectangle-of-Influence Drawings with Non-aligned Frames , 2011, Graph Drawing.

[23]  Goos Kant,et al.  On Triangulating Planar Graphs under the Four-Connectivity Constraint , 1994, SWAT.

[24]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.