Gate-controlled conductance through bilayer graphene ribbons

This work was partially supported by MEC-Spain under Grant No. FIS2009-08744 and by the CSIC/CONICYT program, Grant No. 2009CL0054. J.W.G. gratefully acknowledges helpful discussions with M. Pacheco, the ICMM-CSIC for their hospitality, and the financial support of MECESUP research internship program,CONICYT (CENAVA,Grant No. ACT27), and USM 110856 internal grant

[1]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[2]  Zhenyu Zhang,et al.  Pseudospin Valve in Bilayer Graphene Nanoribbons , 2010 .

[3]  L. Vandersypen,et al.  Gate-induced insulating state in bilayer graphene devices. , 2007, Nature materials.

[4]  C. Beenakker,et al.  Ballistic transmission through a graphene bilayer , 2006, cond-mat/0609243.

[5]  Vladimir I Fal'ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2006, Physical review letters.

[6]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[7]  L. Brey,et al.  Performance limits of graphene-ribbon field-effect transistors , 2007, 0707.0375.

[8]  Jeong Won Kang,et al.  Electrostatically telescoping nanotube nonvolatile memory device , 2007 .

[9]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[10]  A. Morpurgo,et al.  Topological confinement in bilayer graphene. , 2007, Physical review letters.

[11]  G. Iannaccone,et al.  On the Possibility of Tunable-Gap Bilayer Graphene FET , 2008, IEEE Electron Device Letters.

[12]  F. Guinea,et al.  Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. , 2006, Physical review letters.

[13]  D. Goldhaber-Gordon,et al.  Evidence for Klein tunneling in graphene p-n junctions. , 2008, Physical review letters.

[14]  M. Pacheco,et al.  Electronic transport through bilayer graphene flakes , 2010, 1002.3573.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  F. Guinea,et al.  Localized states at zigzag edges of bilayer graphene. , 2007, Physical review letters.

[17]  J. González,et al.  Resonant states in heterostructures of graphene nanoribbons , 2009 .

[18]  K. Jensen,et al.  Tunable nanoresonators constructed from telescoping nanotubes. , 2006, Physical review letters.

[19]  T. Ando,et al.  Transmission through a boundary between monolayer and bilayer graphene , 2010, 1008.4450.

[20]  L. Chico,et al.  Carbon-Nanotube-Based Quantum Dot , 1998 .

[21]  Benedict,et al.  Quantum conductance of carbon nanotubes with defects. , 1996, Physical review. B, Condensed matter.

[22]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[23]  H. Kurz,et al.  Electrical observation of a tunable band gap in bilayer graphene nanoribbons at room temperature , 2010, 1001.5213.

[24]  Edge states and the quantized Hall effect in graphene , 2006, cond-mat/0602505.

[25]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.

[26]  H. Santos,et al.  Carbon nanoelectronics: unzipping tubes into graphene ribbons. , 2009, Physical review letters.

[27]  Jie Chen,et al.  Analytical Study of Electronic Structure in Armchair Graphene Nanoribbons , 2007 .

[28]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[29]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[30]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[31]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[32]  S. Okada,et al.  Influence of disorder on conductance in bilayer graphene under perpendicular electric field. , 2010, Nano letters.

[33]  A. Morpurgo,et al.  Double-gated graphene-based devices , 2009, 0905.1221.

[34]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .

[35]  P. Kim,et al.  Quantum interference and Klein tunnelling in graphene heterojunctions , 2008, Nature Physics.