A new method for derivation of locking‐free plate bending finite elements via mixed/hybrid formulation
暂无分享,去创建一个
[1] J. Z. Zhu,et al. The finite element method , 1977 .
[2] K. Bathe,et al. A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .
[3] M. Gellert,et al. A new high-precision stress finite element for analysis of shell structures , 1977 .
[4] Richard H. Macneal,et al. Derivation of element stiffness matrices by assumed strain distributions , 1982 .
[5] J. A. Stricklin,et al. A rapidly converging triangular plate element , 1969 .
[6] K. Bathe,et al. On the convergence of a four - node plate bending element based on Mindlin - Reissner plate theory a , 1985 .
[7] Theodore H. H. Pian,et al. Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .
[8] Klaus-Jürgen Bathe,et al. A study of three‐node triangular plate bending elements , 1980 .
[9] R. J. Alwood,et al. A polygonal finite element for plate bending problems using the assumed stress approach , 1969 .
[10] Robert L. Spilker,et al. The hybrid‐stress model for thin plates , 1980 .
[11] Bruce M. Irons,et al. Alternative ways for the formulation of hybrid stress elements , 1984 .
[12] K. Washizu. Variational Methods in Elasticity and Plasticity , 1982 .
[13] T. Hughes,et al. Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .
[14] F. Hartmann,et al. The discrete Babuška-Brezzi condition , 1986 .