A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems

This paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from 3D concentrated frictional shift and rolling contact problems with dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate gradient method. One novelty is to consider the tractions of each slip element in a polar coordinate system, using azimuth angles as variables instead of conventional traction variables. The new variables are scaled by the diagonal of the underlying Jacobian. The fast Fourier transform (FFT) technique accelerates all matrix-vector products encountered, exploiting the matrix' Toeplitz structure. Numerical tests demonstrate a significant reduction of the computational time compared to existing solvers for concentrated contact problems.

[1]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[2]  P. Panagiotopoulos,et al.  A nonlinear programming approach to the unilateral contact-, and friction-boundary value problem in the theory of elasticity , 1975 .

[3]  E. Rabinowicz,et al.  Friction and Wear of Materials , 1966 .

[4]  Takahisa Kato,et al.  An FFT-Based Method for Rough Surface Contact , 1997 .

[5]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[6]  T. Andersson,et al.  The Boundary Element Method applied to Two-Dimensional Contact Problems with Friction , 1981 .

[7]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[8]  K. W. Man,et al.  Contact Mechanics Using Boundary Elements , 1994 .

[9]  Edwin A. H. Vollebregt,et al.  A new solver for the elastic normal contact problem using conjugate gradients, deflation, and an FFT-based preconditioner , 2014, J. Comput. Phys..

[10]  Phillipp Kaestner,et al.  Linear And Nonlinear Programming , 2016 .

[11]  Duan Li,et al.  On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.

[12]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[13]  F. Jourdan,et al.  A Gauss-Seidel like algorithm to solve frictional contact problems , 1998 .

[14]  J. Barbera,et al.  Contact mechanics , 1999 .

[15]  Pierre Alart,et al.  A domain decomposition strategy for nonclassical frictional multi-contact problems , 2001 .

[16]  R. Abascal,et al.  Solving 2D rolling problems using the NORM–TANG iteration and mathematical programming , 2000 .

[17]  E. A. H. Vollebregt REFINEMENT OF KALKER'S ROLLING CONTACT MODEL , 2009 .

[18]  Anton van Beek,et al.  Advanced engineering design : lifetime performance and reliability , 2006 .

[19]  ROLF KRAUSE,et al.  A Nonsmooth Multiscale Method for Solving Frictional Two-Body Contact Problems in 2D and 3D with Multigrid Efficiency , 2008, SIAM J. Sci. Comput..

[20]  Wei Chen,et al.  A numerical model for the point contact of dissimilar materials considering tangential tractions , 2008 .

[21]  Edwin A. H. Vollebregt,et al.  The Bound-Constrained Conjugate Gradient Method for Non-negative Matrices , 2013, Journal of Optimization Theory and Applications.

[22]  Kai Willner,et al.  Fully Coupled Frictional Contact Using Elastic Halfspace Theory , 2008 .

[23]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[24]  Tinne Hoff Kjeldsen,et al.  Traces and Emergence of Nonlinear Programming , 2013 .

[25]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[26]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[27]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[28]  K. Johnson,et al.  Three-Dimensional Elastic Bodies in Rolling Contact , 1990 .

[29]  Zdeněk Dostál,et al.  A theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction , 2012 .

[30]  Roger Enblom,et al.  Deterioration mechanisms in the wheel–rail interface with focus on wear prediction: a literature review , 2009 .

[31]  F. Kosior,et al.  Analysis of frictional contact problem using boundary element method and domain decomposition method , 1999 .

[32]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[33]  Stuart L. Grassie,et al.  Rolling contact fatigue on the British railway system: treatment , 2005 .

[34]  E. Vollebregt A Gauss-Seidel type solver for special convex programs, with application to frictional contact mechanics , 1995 .

[35]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[36]  Harold W. Kuhn,et al.  Nonlinear programming: a historical view , 1982, SMAP.

[37]  J. Kalker Contact mechanical algorithms , 1988 .

[38]  Enrico Meli,et al.  A numerical procedure for the wheel profile optimisation on railway vehicles , 2014 .

[39]  T. Andersson,et al.  The boundary element method applied to two-dimensional contact problems , 1983 .