Evidence of cryptic methane cycling and non-methanogenic 1 methylamine consumption in the sulfate-reducing zone of 2 sediment in the Santa Barbara Basin, California

. The recently discovered cryptic methane

[1]  D. Canfield,et al.  The ‘oxygen’ in oxygen minimum zones , 2022, Environmental microbiology.

[2]  T. Treude,et al.  Seasonality of Water Column Methane Oxidation and Deoxygenation in a Dynamic Marine Environment , 2022, Geochimica et Cosmochimica Acta.

[3]  C. Peacock,et al.  Mineralogical control on methylotrophic methanogenesis and implications for cryptic methane cycling in marine surface sediment , 2022, Nature Communications.

[4]  J. Banfield,et al.  Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways , 2021, Nature communications.

[5]  T. Treude,et al.  Deciphering cryptic methane cycling: Coupling of methylotrophic methanogenesis and anaerobic oxidation of methane in hypersaline coastal wetland sediment , 2021, Geochimica et Cosmochimica Acta.

[6]  D. Valentine,et al.  An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria , 2021, bioRxiv.

[7]  J. Biddle,et al.  “Sifarchaeota,” a Novel Asgard Phylum from Costa Rican Sediment Capable of Polysaccharide Degradation and Anaerobic Methylotrophy , 2021, Applied and Environmental Microbiology.

[8]  A. Stams,et al.  Anaerobic microbial methanol conversion in marine sediments , 2021, Environmental microbiology.

[9]  Larry Cassidy,et al.  Pacific , 2020, Show Me Small-Town Missouri.

[10]  R. Conrad Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: A mini review , 2020 .

[11]  S. Joye,et al.  Heterotrophic metabolism of C1 and C2 low molecular weight compounds in northern Gulf of Mexico sediments: Controlling factors and implications for organic carbon degradation , 2019, Geochimica et Cosmochimica Acta.

[12]  B. Jørgensen,et al.  Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea , 2018, The ISME Journal.

[13]  B. Jørgensen,et al.  Methylotrophic methanogenesis fuels cryptic methane cycling in marine surface sediment , 2018 .

[14]  W. Whitman,et al.  Methanogenesis , 2018, Current Biology.

[15]  S. Joye,et al.  Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea , 2018 .

[16]  M. Lever,et al.  Distribution and isotopic composition of trimethylamine, dimethylsulfide and dimethylsulfoniopropionate in marine sediments , 2017 .

[17]  B. Jørgensen,et al.  Concurrent Methane Production and Oxidation in Surface Sediment from Aarhus Bay, Denmark , 2017, Front. Microbiol..

[18]  N. Jehmlich,et al.  Methylamine as a nitrogen source for microorganisms from a coastal marine environment , 2017, Environmental microbiology.

[19]  T. Treude,et al.  Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea , 2017 .

[20]  S. Joye,et al.  Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico , 2016 .

[21]  T. Treude,et al.  Response of anaerobic methanotrophs and benthic foraminifera to 20 years of methane emission from a gas blowout in the North Sea , 2015 .

[22]  T. Treude,et al.  Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin , 2015 .

[23]  L. Chistoserdova Methylotrophs in natural habitats: current insights through metagenomics , 2015, Applied Microbiology and Biotechnology.

[24]  T. Treude,et al.  Organic carbon production, mineralisation and preservation on the Peruvian margin , 2014 .

[25]  C. Martens,et al.  Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment , 2013 .

[26]  Kishori M. Konwar,et al.  Microbial ecology of expanding oxygen minimum zones , 2012, Nature Reviews Microbiology.

[27]  L. Wehrmann,et al.  Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323) , 2011 .

[28]  L. Levin,et al.  Effects of natural and human-induced hypoxia on coastal benthos , 2009 .

[29]  K. Knittel,et al.  Anaerobic oxidation of methane: progress with an unknown process. , 2009, Annual review of microbiology.

[30]  L. Levin,et al.  Coastal hypoxia and sediment biogeochemistry , 2009 .

[31]  T. Treude,et al.  Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis , 2009 .

[32]  A. Paulmier,et al.  Oxygen minimum zones (OMZs) in the modern ocean , 2009 .

[33]  S. Ragsdale,et al.  Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. , 2008, Biochimica et biophysica acta.

[34]  Andrew W. Dale,et al.  Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling , 2008 .

[35]  P. Régnier,et al.  Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction–transport simulations , 2008 .

[36]  W. Reeburgh Oceanic methane biogeochemistry. , 2007, Chemical reviews.

[37]  T. Treude,et al.  Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic) , 2005 .

[38]  John J. Helly,et al.  Global distribution of naturally occurring marine hypoxia on continental margins , 2004 .

[39]  Grant Garven,et al.  Evolution of a hydrocarbon migration pathway along basin-bounding faults: Evidence from fault cement , 2004 .

[40]  B. Jørgensen,et al.  A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements , 2004 .

[41]  Antje Boetius,et al.  The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps , 2004 .

[42]  Rudolf Amann,et al.  Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane , 2002, Science.

[43]  J. M. Hayes,et al.  Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments , 2001, Applied and Environmental Microbiology.

[44]  Olaf Pfannkuche,et al.  A marine microbial consortium apparently mediating anaerobic oxidation of methane , 2000, Nature.

[45]  Derek C. Quigley,et al.  The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions , 1999 .

[46]  R. Conrad Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments , 1999 .

[47]  P. Liss,et al.  Distributions and biogeochemistries of methylamines and ammonium in the Arabian Sea , 1999 .

[48]  R. Thauer Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. , 1998, Microbiology.

[49]  I. Moretti The role of faults in hydrocarbon migration , 1998, Petroleum Geoscience.

[50]  T. Ferdelman,et al.  Sulfate reduction and methanogenesis in a Thioploca -dominated sediment off the coast of Chile , 1997 .

[51]  Cindy Lee,et al.  Sources and distribution of aliphatic amines in salt marsh sediment , 1994 .

[52]  Cindy Lee,et al.  Adsorption and desorption of aliphatic amines, amino acids and acetate by clay minerals and marine sediments , 1993 .

[53]  A. Oren Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments , 1990, Antonie van Leeuwenhoek.

[54]  Cindy Lee,et al.  The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments , 1990 .

[55]  D. M. Ward,et al.  Substrates for Sulfate Reduction and Methane Production in Intertidal Sediments , 1983, Applied and environmental microbiology.

[56]  Ronald S. Oremland,et al.  Methanogenesis and Sulfate Reduction: Competitive and Noncompetitive Substrates in Estuarine Sediments , 1982 .

[57]  R. Thauer,et al.  Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate , 1982, Archives of Microbiology.

[58]  B. F. Taylor,et al.  Sulfate reduction and methanogenesis in marine sediments , 1978 .

[59]  A. Soutar,et al.  Sedimentation and climatic patterns in the Santa Barbara Basin during the 19th and 20th centuries , 1977 .

[60]  E. Sholkovitz Interstitial water chemistry of the Santa Barbara Basin sediments , 1973 .

[61]  Randolph B. Tarrier,et al.  Groups , 1973, Algebra.

[62]  Yin Chen,et al.  Microbiology and Ecology of Methylated Amine Metabolism in Marine Ecosystems. , 2019, Current issues in molecular biology.

[63]  T. Treude Biogeochemical reactions in marine sediments underlying anoxic water bodies , 2012 .

[64]  K. Nauhaus,et al.  In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. , 2007, Environmental microbiology.

[65]  B. Jørgensen Bacteria and Marine Biogeochemistry , 2006 .

[66]  D. Canfield,et al.  Nitrogen in the Marine Environment , 2006 .

[67]  J. Rullkötter Organic Matter: The Driving Force for Early Diagenesis , 2006 .

[68]  M. Stephenson CCVII. HYDROGENASE. III. THE BACTERIAL FORMATION OF METHANE BY THE REDUCTION OF ONE-CARBON COMPOUNDS BY MOLECULAR HYDROGEN , 2005 .

[69]  L. Levin Oxygen minimum zone Benthos: Adaptation and community response to hypoxia , 2003 .

[70]  Antje Boetius,et al.  The anaerobic oxidation of methane; new insights in microbial ecology and biogeochemistry , 2002 .

[71]  Thomas E Hanson,et al.  Methanotrophic bacteria. , 1996, Microbiological reviews.

[72]  David D. Jackson,et al.  Seismic hazards in southern California: probable earthquakes, 1994 to 2024 , 1996 .

[73]  A. Schimmelmann,et al.  Evolutionary changes over the last 1000 years of reduced sulfur phases and organic carbon in varved sediments of the Santa Barbara Basin, California , 1993 .

[74]  W. Berger,et al.  Climatically controlled marker layers in Santa Barbara Basin sediments and fine‐scale core‐to‐core correlation , 1990 .

[75]  D. Lovley,et al.  Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments , 1986 .

[76]  Cindy Lee,et al.  Dissolved, exchangeable and bound aliphatic amines in marine sediments: initial results , 1984 .

[77]  R. Oremland,et al.  Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. , 1982, Applied and environmental microbiology.

[78]  Liu Xinwu This is How the Discussion Started , 1981 .

[79]  C. Anthony The biochemistry of methylotrophic micro-organisms. , 1975, Science progress.

[80]  K. Wyrtki The oxygen minima in relation to ocean circulation , 1962 .