Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles.

Acoustic vortices can transfer angular momentum and trap particles. Here, we show that particles trapped in airborne acoustic vortices orbit at high speeds, leading to dynamic instability and ejection. We demonstrate stable trapping inside acoustic vortices by generating sequences of short-pulsed vortices of equal helicity but opposite chirality. This produces a "virtual vortex" with an orbital angular momentum that can be tuned independently of the trapping force. We use this method to adjust the rotational speed of particles inside a vortex beam and, for the first time, create three-dimensional acoustics traps for particles of wavelength order (i.e., Mie particles).

[1]  P. Marston,et al.  Acoustic radiation torque on small objects in viscous fluids and connection with viscous dissipation. , 2014, The Journal of the Acoustical Society of America.

[2]  Jonas Johansson,et al.  Airborne chemistry coupled to Raman spectroscopy. , 2003, Analytical chemistry.

[3]  D. Zang,et al.  Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound , 2017 .

[4]  F. Mitri,et al.  Langevin acoustic radiation force of a high-order bessel beam on a rigid sphere , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  Michael Baudoin,et al.  Selective Manipulation of Microscopic Particles with Precursor Swirling Rayleigh Waves , 2017 .

[6]  Dimos Poulikakos,et al.  Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air , 2013, Scientific Reports.

[7]  Shiyang Liu,et al.  Dynamical and phase-diagram study on stable optical pulling force in Bessel beams , 2013 .

[8]  Régis Marchiano,et al.  Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. , 2014, Physical review letters.

[9]  Jie Zhang,et al.  Observation of orbital angular momentum transfer from bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. , 2015, Physical review letters.

[10]  Régis Marchiano,et al.  Spherical vortex beams of high radial degree for enhanced single-beam tweezers , 2013 .

[11]  François Coulouvrat,et al.  Generalization of helicoidal beams for short pulses. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Changyang Lee,et al.  Single beam acoustic trapping. , 2009, Applied physics letters.

[14]  Henrik Bruus,et al.  Acoustofluidics 7: The acoustic radiation force on small particles. , 2012, Lab on a chip.

[15]  W. J. Xie,et al.  Acoustic method for levitation of small living animals , 2006 .

[16]  Andrew G. Glen,et al.  APPL , 2001 .

[17]  H. O'neil Theory of Focusing Radiators , 1949 .

[18]  Rokas Drevinskas,et al.  Single beam optical vortex tweezers with tunable orbital angular momentum , 2014 .

[19]  Sandy Cochran,et al.  Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams. , 2012, Physical review letters.

[20]  Qifa Zhou,et al.  Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application , 2013, Biotechnology and bioengineering.

[21]  Einar W. Høst Doctoral Dissertation , 1956, Church History.

[22]  John Lekner,et al.  Acoustic beams with angular momentum. , 2006, The Journal of the Acoustical Society of America.

[23]  B. Oesterlé,et al.  Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers , 1998 .

[24]  Marco A. B. Andrade,et al.  Acoustic levitation of a large solid sphere , 2016 .

[25]  C. Pfrang,et al.  Control of Nanomaterial Self-Assembly in Ultrasonically Levitated Droplets. , 2016, The journal of physical chemistry letters.

[26]  Paul D. Wilcox,et al.  Independent trapping and manipulation of microparticles using dexterous acoustic tweezers , 2014 .

[27]  S. I. Rubinow,et al.  The transverse force on a spinning sphere moving in a viscous fluid , 1961, Journal of Fluid Mechanics.

[28]  J. Faran Sound Scattering by Solid Cylinders and Spheres , 1951 .

[29]  Jack Ng,et al.  Theory of optical trapping by an optical vortex beam. , 2009, Physical review letters.

[30]  D. Poulikakos,et al.  Acoustophoretic contactless elevation, orbital transport and spinning of matter in air. , 2014, Physical review letters.

[31]  Etienne Brasselet,et al.  Acoustic rotational manipulation using orbital angular momentum transfer. , 2012, Physical review letters.

[32]  Miles J. Padgett,et al.  An acoustic spanner and its associated rotational Doppler shift , 2008 .

[33]  Jabez J. McClelland,et al.  Electron Vortex Beams with High Quanta of Orbital Angular Momentum , 2011, Science.

[34]  Jörg Wallaschek,et al.  A standing wave acoustic levitation system for large planar objects , 2011 .

[35]  P. P. Brown,et al.  Sphere Drag and Settling Velocity Revisited , 2003 .

[36]  Edward Hæggström,et al.  Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos , 2015, Scientific Reports.

[37]  Michael Baudoin,et al.  Taming the degeneration of Bessel beams at an anisotropic-isotropic interface: Toward three-dimensional control of confined vortical waves. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  B. Drinkwater,et al.  On the radiation force fields of fractional-order acoustic vortices , 2015 .

[39]  Mironov,et al.  Mean force on a small sphere in a sound field in a viscous fluid , 2000, The Journal of the Acoustical Society of America.

[40]  Hans M. Hertz,et al.  Standing-wave Acoustic Trap For Nonintrusive Positioning of Microparticles , 1995 .

[41]  Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. , 2016, Structure.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Karen Volke-Sepúlveda,et al.  Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space , 2009 .

[44]  Julio C Adamowski,et al.  Acoustic levitation of an object larger than the acoustic wavelength. , 2017, The Journal of the Acoustical Society of America.

[45]  J. Popp,et al.  Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites. , 2007, Lab on a chip.

[46]  Daniel Ahmed,et al.  Rotational manipulation of single cells and organisms using acoustic waves , 2016, Nature Communications.

[47]  Sriram Subramanian,et al.  Holographic acoustic elements for manipulation of levitated objects , 2015, Nature Communications.

[48]  Staffan Nilsson,et al.  Airborne chemistry: acoustic levitation in chemical analysis , 2004, Analytical and bioanalytical chemistry.

[49]  Y. Wang,et al.  High-speed acoustic communication by multiplexing orbital angular momentum , 2017, Proceedings of the National Academy of Sciences.

[50]  دکتر فرساد ایمانی,et al.  11 , 1900, You Can Cross the Massacre on Foot.

[51]  J.-L. Thomas,et al.  Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere. , 2013, The Journal of the Acoustical Society of America.

[52]  Régis Marchiano,et al.  Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. , 2003, Physical review letters.

[53]  Glauber T. Silva,et al.  Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid. , 2013, The Journal of the Acoustical Society of America.

[54]  J. Zierep,et al.  Das Stromfeld im Spalt zwischen zwei konzentrischen Kugelflächen, von denen die innere rotiert , 1970 .

[55]  Martyn Hill,et al.  Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator. , 2010, Ultrasonics.