A cohesive zone model for low cycle fatigue life prediction of solder joints

A cohesive zone model is proposed in this paper in an effort to predict the low cycle fatigue life of solder joints plastically deformed under cyclic loading. Damage mechanics is incorporated into the cohesive law to account for the gradual loss of stiffness and strength of solder materials under cyclic loading. The damage evolution law is assumed to be a function of accumulated plastic strain. It has been demonstrated that, once the parameters of the cohesive zone model are determined via one particular cyclic test, it is then able to predict the fatigue life of solder joints made of the same materials system under different loading conditions.

[1]  H. Solomon,et al.  Predicting Thermal and Mechanical Fatigue Lives from Isothermal Low Cycle Data , 1991 .

[2]  H. E. Fang,et al.  Characteristics of Creep Damage for 60 Sn-40 Pb Solder Material , 1999 .

[3]  Baohua Ji,et al.  Modeling fracture in nanomaterials via a virtual internal bond method , 2003 .

[4]  H. E. Fang,et al.  A Method of Damage Mechanics Analysis for Solder Material , 1997 .

[5]  Anthony G. Evans,et al.  MECHANICS OF MATERIALS: TOP-DOWN APPROACHES TO FRACTURE , 2000 .

[6]  H. E. Fang,et al.  Damage mechanics characterization on the fatigue behaviour of a solder joint material , 1998 .

[7]  M. D. Thouless,et al.  Elastic–plastic mode-II fracture of adhesive joints , 2001 .

[8]  M. D. Thouless,et al.  Mixed-mode fracture analyses of plastically-deforming adhesive joints , 2001 .

[9]  S. R. Bodner,et al.  Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials , 1975 .

[10]  J. Chaboche 1 – Unified Cyclic Viscoplastic Constitutive Equations: Development, Capabilities, and Thermodynamic Framework , 1996 .

[11]  Shankar Mall,et al.  A cohesive zone model for fatigue crack growth in quasibrittle materials , 2001 .

[12]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[13]  S. Knecht,et al.  Constitutive relation and creep-fatigue life model for eutectic tin-lead solder , 1990 .

[14]  M. D. Thouless,et al.  Cohesive-zone modeling of the deformation and fracture of weld-bonded joints , 2004 .

[15]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[16]  M. D. Thouless,et al.  Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation , 1999 .

[17]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[18]  D. R. Frear,et al.  Microstructurally Based Finite Element Simulation on Solder Joint Behaviour , 1997 .

[19]  M. Thouless,et al.  Chapter 7 – Measurement and analysis of the fracture properties of adhesive joints , 2002 .

[20]  M. D. Thouless,et al.  Deformation and fracture of adhesive layers constrained by plastically-deforming adherends , 2000 .

[21]  A. de-Andrés,et al.  Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading , 1999 .

[22]  M. Elices,et al.  The cohesive zone model: advantages, limitations and challenges , 2002 .

[23]  S. Lee,et al.  A Damage Evolution Model for Thermal Fatigue Analysis of Solder Joints , 2000 .

[24]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[25]  H. D. Solomon,et al.  Energy Approach to the Fatigue of 60/40 Solder: Part II— Influence of Hold Time and Asymmetric Loading , 1996 .

[26]  H. D. Solomon,et al.  Energy Approach to the Fatigue of 60/40 Solder: Part I—Influence of Temperature and Cycle Frequency , 1995 .

[27]  Shen-Haw Ju,et al.  Life Prediction of Solder Joints by Damage and Fracture Mechanics , 1993 .

[28]  T. Siegmund,et al.  An irreversible cohesive zone model for interface fatigue crack growth simulation , 2003 .

[29]  Nonlinear analysis of underconstrained structures , 1999 .

[30]  Cemal Basaran,et al.  A Thermodynamic Framework for Damage Mechanics of Solder Joints , 1998 .