Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators

[1]  A. Kudin,et al.  Mitochondrial dysfunction in neurodegenerative disorders. , 2007, Biochemical Society transactions.

[2]  Á. Simonyi,et al.  Kainic acid-mediated excitotoxicity as a model for neurodegeneration , 2007, Molecular Neurobiology.

[3]  Acknowledgments , 2006, Molecular and Cellular Endocrinology.

[4]  Jiandie D. Lin,et al.  Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. , 2006, Cell metabolism.

[5]  E. Araki,et al.  Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. , 2006, Diabetes.

[6]  M. Beal,et al.  Mitochondria take center stage in aging and neurodegeneration , 2005, Annals of neurology.

[7]  Jiang Li,et al.  The hypothesis , 1990 .

[8]  M. Monsalve,et al.  PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells , 2005 .

[9]  Christoph Handschin,et al.  Metabolic control through the PGC-1 family of transcription coactivators. , 2005, Cell metabolism.

[10]  Jiandie D. Lin,et al.  Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. , 2005, Cell metabolism.

[11]  P. Webb Faculty Opinions recommendation of Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. , 2005 .

[12]  Robert S. Balaban,et al.  Mitochondria, Oxidants, and Aging , 2005, Cell.

[13]  Christoph Handschin,et al.  Hyperlipidemic Effects of Dietary Saturated Fats Mediated through PGC-1β Coactivation of SREBP , 2005, Cell.

[14]  M. Monsalve,et al.  PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. , 2005, Cardiovascular research.

[15]  Jiandie D. Lin,et al.  Defects in Adaptive Energy Metabolism with CNS-Linked Hyperactivity in PGC-1α Null Mice , 2004, Cell.

[16]  M. Vila,et al.  MPTP as a Mitochondrial Neurotoxic Model of Parkinson's Disease , 2004, Journal of bioenergetics and biomembranes.

[17]  Xiaohui S. Xie,et al.  Errα and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle , 2004 .

[18]  Marc Montminy,et al.  PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3 , 2004, Nature Medicine.

[19]  R. Scarpulla,et al.  Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. , 2004, Genes & development.

[20]  Xiaohui Xie,et al.  Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Marc Montminy,et al.  PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. , 2004, Nature medicine.

[22]  Jiandie D. Lin,et al.  Bioenergetic Analysis of Peroxisome Proliferator-activated Receptor γ Coactivators 1α and 1β (PGC-1α and PGC-1β) in Muscle Cells* , 2003, Journal of Biological Chemistry.

[23]  Bruce M. Spiegelman,et al.  Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction , 2003, Nature.

[24]  Jiandie D. Lin,et al.  An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Riccio,et al.  Redox Regulation of cAMP-responsive Element-binding Protein and Induction of Manganous Superoxide Dismutase in Nerve Growth Factor-dependent Cell Survival* , 2003, The Journal of Biological Chemistry.

[26]  P. Puigserver,et al.  Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): Requirement for hepatocyte nuclear factor 4α in gluconeogenesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  P. Puigserver,et al.  Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Jiandie D. Lin,et al.  Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. , 2003, The Journal of biological chemistry.

[29]  Jiandie D. Lin,et al.  An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Jerry Donovan,et al.  Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. , 2003, Nature.

[31]  Jiandie D. Lin,et al.  Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres , 2002, Nature.

[32]  Eric C. Griffith,et al.  CREB Transcriptional Activity in Neurons Is Regulated by Multiple, Calcium-Specific Phosphorylation Events , 2002, Neuron.

[33]  S. Nemoto,et al.  Redox Regulation of Forkhead Proteins Through a p66shc-Dependent Signaling Pathway , 2002, Science.

[34]  J. Stuart,et al.  Superoxide activates mitochondrial uncoupling proteins , 2002, Nature.

[35]  Jiandie D. Lin,et al.  Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. , 2002, Nature.

[36]  Wolfgang Schmid,et al.  Disruption of CREB function in brain leads to neurodegeneration , 2002, Nature Genetics.

[37]  Marc Montminy,et al.  CREB regulates hepatic gluconeogenesis through the coactivator PGC-1 , 2001, Nature.

[38]  Guillaume Adelmant,et al.  Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 , 2001, Nature.

[39]  G. Brown,et al.  Nitric Oxide, Mitochondria, and Cell Death , 2001, IUBMB life.

[40]  B. Miroux,et al.  Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production , 2000, Nature Genetics.

[41]  J. Saffitz,et al.  Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. , 2000, The Journal of clinical investigation.

[42]  M. Brand Uncoupling to survive? The role of mitochondrial inefficiency in ageing , 2000, Experimental Gerontology.

[43]  M. Vila,et al.  The parkinsonian toxin MPTP: action and mechanism. , 2000, Restorative neurology and neuroscience.

[44]  J. Matés,et al.  Antioxidant enzymes and human diseases. , 1999, Clinical biochemistry.

[45]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.

[46]  D. Wallace Mitochondrial diseases in man and mouse. , 1999, Science.

[47]  P. Puigserver,et al.  A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis , 1998, Cell.

[48]  D. Ginty,et al.  A Dominant-Negative Inhibitor of CREB Reveals that It Is a General Mediator of Stimulus-Dependent Transcription of c-fos , 1998, Molecular and Cellular Biology.

[49]  G. Brown,et al.  Cellular energy utilization and molecular origin of standard metabolic rate in mammals. , 1997, Physiological reviews.

[50]  R. Ramsay,et al.  Mechanism of the neurotoxicity of MPTP , 1990, FEBS letters.