Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk
暂无分享,去创建一个
A. Whittemore | W. Chung | L. Kiemeney | J. Marks | M. Beckmann | P. Fasching | C. Weinberg | R. Vierkant | T. Sellers | Jingmei Li | F. Couch | J. Chang-Claude | S. Chanock | E. Goode | B. Bonanni | O. Olopade | Y. Chiew | A. deFazio | B. Karlan | A. Wolk | J. Benítez | N. Le | A. Berchuck | G. Giles | J. Hopper | C. Haiman | E. John | T. Dörk | M. Southey | D. Easton | D. Huntsman | D. Lambrechts | E. Khusnutdinova | M. Greene | K. Offit | A. Antoniou | J. Brenton | Å. Borg | D. Levine | S. Buys | W. Zheng | A. Ziogas | H. Anton-Culver | U. Menon | K. Aben | R. Barkardottir | D. Eccles | D. Evans | G. Chenevix-Trench | H. Nevanlinna | D. Kang | N. Bogdanova | P. Devilee | R. Milne | U. Hamann | C. Lázaro | K. Nathanson | J. Cunningham | M. Goodman | J. Garber | C. Isaacs | J. Dennis | M. Adank | R. Schmutzler | I. Andrulis | G. Glendon | A. Swerdlow | P. Radice | P. Peterlongo | S. Manoukian | A. Jakubowska | J. Lubiński | N. Antonenkova | A. Toland | K. Matsuo | A. Wu | H. Cai | S. Teo | M. Hartman | J. Simard | P. Pharoah | J. Tyrer | L. Titus | S. Neuhausen | M. Bermisheva | D. Prokofyeva | D. Torres | D. Yannoukakos | A. Monteiro | S. Gayther | L. Forétova | L. McGuffog | F. Dao | A. Godwin | B. Peshkin | E. Friedman | N. Tung | A. Sokolenko | E. Imyanitov | C. Huff | P. Ganz | N. Wentzensen | A. Piskorz | M. Bernardini | A. Osorio | R. Sutphen | Michelle R Jones | P. Hulick | E. White | B. Wappenschmidt | I. McNeish | A. Kurian | S. Domchek | D. Stoppa-Lyonnet | D. V. Edwards | Sue-Kyung Park | S. Olson | H. Risch | C. Engel | C. Singer | K. Claes | L. Kelemen | O. Johannsson | J. Rantala | B. Arun | K. Odunsi | I. Campbell | R. Matsuno | I. Runnebaum | O. Díez | Byoung-Gie Kim | G. Aravantinos | J. Doherty | J. Schildkraut | K. Moysich | F. Modugno | Austin Miller | E. Hahnen | F. Nielsen | K. Lu | J. McLaughlin | P. Pérez-Segura | P. James | M. Daly | Y. Woo | A. V. van Altena | Kexin Chen | Eric Ross | R. Fortner | E. Dareng | E. Bandera | M. Hildebrandt | C. Pearce | J. Flanagan | F. Heitz | D. Barnes | M. Thomassen | R. Butzow | C. Rodríguez-Antona | K. Lawrenson | D. Sandler | L. Nikitina-Zake | J. Lester | A. Karnezis | R. Travis | M. Teixeira | J. Balmaña | J. Weitzel | M. Tischkowitz | H. Harris | W. Sieh | M. Terry | M. Rossing | V. Setiawan | Michael E. Jones | S. Winham | Honglin Song | P. Webb | A. Jensen | N. Håkansson | L. Cook | J. Gronwald | F. Lesueur | S. Tworoger | I. Komenaka | E. Oláh | E. Høgdall | C. Høgdall | P. Soucy | D. Barrowdale | T. V. Hansen | M. Montagna | E. J. van Rensburg | S. Ramus | M. Caligo | R. Janavicius | A. Kwong | L. Papi | I. Pedersen | Y. Ding | P. Mai | J. Loud | S. Agata | M. de la Hoya | L. Bjørge | H. Steed | Xin Yang | A. Beeghly-Fadiel | N. Mebirouk | A. H. van der Hout | G. Leslie | M. Parsons | M. Santamariña | Y. Tan | D. Thull | A. Black | T. Pejović | J. Kupryjańczyk | P. Thompson | M. Dürst | K. Terry | M. Larson | E. Van Nieuwenhuysen | E. Macháčková | Marjorie J. Riggan | R. Cannioto | Ruea-Yea Huang | T. May | A. Peixoto | J. Permuth | B. Trabert | K. Zorn | E. Davies | Harshad Pathak | F. Gensini | S. K. Kjaer | Hampus Olsson | A. Bois | K. Zavaglia | Frances F Wang | Lian Li | A. Augustinsson | A. Budziłowska | H. Cassingham | Sarah Colanna | Robin de Putter | A. DePersia | H. Eliassen | Albina N. Minlikeeva | E. Munro | Joanne Ngeow Yuen Yie | H. R. Nielsen | S. Olbrecht | K. Shan | Liv Cecilie Vestrheim Thomsen | Elena Valen | Ana Vega | Li Yan | Michael E. Jones | J. Marks | Goska Leslie | H. Nielsen | R. Huang | Marjorie J Riggan | T. Pejovic | A. Vega | L. Foretova | M. Riggan | K. Lu | A. Monteiro | D. Evans | H. Cai | Ana Peixoto | E. Friedman | K. Lu | Kexin Chen | M. Teixeira | A. van Altena | C. Rodríguez‐Antona | M. Larson | A. Wu | Noura Mebirouk | Johanna Rantala | Diana Torres | J. McLaughlin | D. Evans
[1] D. Steinemann,et al. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants , 2020, Genetics in Medicine.
[2] J. Denny,et al. Evaluating the Utility of Polygenic Risk Scores in Identifying High-Risk Individuals for Eight Common Cancers , 2020, JNCI cancer spectrum.
[3] L. B. Rangel,et al. Functional Landscape of Common Variants Associated with Susceptibility to Epithelial Ovarian Cancer , 2020, Current Epidemiology Reports.
[4] R. Vierkant,et al. Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer , 2019, Journal of Medical Genetics.
[5] A. Whittemore,et al. Identification of novel epithelial ovarian cancer loci in women of African ancestry , 2020, International journal of cancer.
[6] Julie O. Culver,et al. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. , 2019, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[7] Kylie L. Gorringe,et al. The molecular origin and taxonomy of mucinous ovarian carcinoma , 2019, Nature Communications.
[8] Kylie L. Gorringe,et al. A combination of the immunohistochemical markers CK7 and SATB2 is highly sensitive and specific for distinguishing primary ovarian mucinous tumors from colorectal and appendiceal metastases , 2019, Modern Pathology.
[9] Jennifer A. Doherty,et al. Genome-wide association studies identify susceptibility loci for epithelial ovarian cancer in east Asian women. , 2019, Gynecologic oncology.
[10] M. García-Closas,et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors , 2019, Genetics in Medicine.
[11] Kristen S Purrington,et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes , 2018, American Journal of Human Genetics.
[12] M. Blum,et al. Efficient Implementation of Penalized Regression for Genetic Risk Prediction , 2018, Genetics.
[13] P. Donnelly,et al. The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.
[14] Yang Ni,et al. Polygenic prediction via Bayesian regression and continuous shrinkage priors , 2018, Nature Communications.
[15] K. D. Sørensen,et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci , 2018, Nature Genetics.
[16] P. Pharoah,et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study , 2018, Journal of Medical Genetics.
[17] B. Karlan,et al. Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. , 2017, Gynecologic oncology.
[18] W. Chung,et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers , 2017, JAMA.
[19] T. Sellers,et al. Common Genetic Variation and Susceptibility to Ovarian Cancer: Current Insights and Future Directions , 2017, Cancer Epidemiology, Biomarkers & Prevention.
[20] Pak Chung Sham,et al. Polygenic scores via penalized regression on summary statistics , 2016, bioRxiv.
[21] W. Chung,et al. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers , 2017, Journal of the National Cancer Institute.
[22] Lara E Sucheston-Campbell,et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer , 2017, Nature Genetics.
[23] Hongyu Zhao,et al. Leveraging functional annotations in genetic risk prediction for human complex diseases , 2016, bioRxiv.
[24] T. Perren. Mucinous epithelial ovarian carcinoma. , 2016, Annals of oncology : official journal of the European Society for Medical Oncology.
[25] P. Visscher,et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores , 2015, bioRxiv.
[26] M. Pike,et al. Population Distribution of Lifetime Risk of Ovarian Cancer in the United States , 2015, Cancer Epidemiology, Biomarkers & Prevention.
[27] Hongbing Shen,et al. Genome-wide association study identifies new susceptibility loci for epithelial ovarian cancer in Han Chinese women , 2022 .
[28] Justin Zobel,et al. Performance and Robustness of Penalized and Unpenalized Methods for Genetic Prediction of Complex Human Disease , 2013, Genetic epidemiology.
[29] P. Visscher,et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.
[30] Rohan L. Fernando,et al. Extension of the bayesian alphabet for genomic selection , 2011, BMC Bioinformatics.
[31] P. Visscher,et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.
[32] Yan V. Sun,et al. Machine learning in genome‐wide association studies , 2009, Genetic epidemiology.
[33] Peter M Visscher,et al. Prediction of individual genetic risk to disease from genome-wide association studies. , 2007, Genome research.
[34] Jerilyn A. Walker,et al. Genetic variation among world populations: inferences from 100 Alu insertion polymorphisms. , 2003, Genome research.