Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method.

The optimal morphology of nanotextured interfaces, which increase the photocurrent density of thin-film solar cells, is still an open question. While random morphologies have the advantage to scatter light into a broad angular range, they are more difficult to assess with Maxwell solvers, such as the finite-element method (FEM). With this study we aim to identify necessary requirements on the unit cell design for the accurate simulation of nanotextured thin-film solar cells with FEM.

[1]  B. Rech,et al.  Polycrystalline silicon thin-film solar cells: Status and perspectives , 2013 .

[2]  Bernd Rech,et al.  Towards wafer quality crystalline silicon thin-film solar cells on glass , 2014 .

[3]  Eli Yablonovitch,et al.  Optically enhanced amorphous silicon solar cells , 1983 .

[4]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[5]  Jianying Zhou,et al.  Deterministic quasi-random nanostructures for photon control , 2013, Nature Communications.

[6]  Miro Zeman,et al.  Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells , 2008 .

[7]  PerlinKen An image synthesizer , 1985 .

[8]  Bernd Rech,et al.  Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass , 2014 .

[9]  S. Guha,et al.  Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell , 2011 .

[10]  D. Carlson,et al.  AMORPHOUS SILICON SOLAR CELL , 1976 .

[11]  Karsten Bittkau,et al.  Optical simulation of photonic random textures for thin-film solar cells , 2014, Photonics Europe.

[12]  J. Parisi,et al.  Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells , 2015 .

[13]  Ken Perlin Better acting in computer games: the use of procedural methods , 2002, Comput. Graph..

[14]  D. E. Carlson Amorphous silicon solar cells , 1977 .

[15]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[16]  Franziska Back,et al.  Quasicrystalline-structured light harvesting nanophotonic silicon films on nanoimprinted glass for ultra-thin photovoltaics , 2014 .

[17]  M. Zeman,et al.  Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range , 2011 .

[18]  M. Zeman,et al.  The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells , 2013 .

[19]  C. Battaglia,et al.  Modeling of light scattering from micro- and nanotextured surfaces , 2010 .

[20]  M. Schulte,et al.  Modeling of light scattering properties from surface profile in thin-film solar cells by Fourier transform techniques , 2011 .

[21]  M. Zeman,et al.  Angular resolved scattering by a nano-textured ZnO/silicon interface , 2011 .

[22]  Klaus Jäger,et al.  Optimized nano-textured interfaces for thin-film silicon solar cells: identifying the limit of randomly textured interfaces , 2014, Photonics Europe.

[23]  Miro Zeman,et al.  Designing optimized nano textures for thin-film silicon solar cells. , 2013, Optics express.

[24]  M. Zeman,et al.  A scattering model for surface-textured thin films , 2009 .

[25]  Miro Zeman,et al.  Full‐wave optoelectrical modeling of optimized flattened light‐scattering substrate for high efficiency thin‐film silicon solar cells , 2014 .

[26]  V. Smirnov,et al.  Light scattering at textured back contacts for n-i-p thin-film silicon solar cells , 2012 .

[27]  P. Babál,et al.  Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells , 2015 .

[28]  M. Zeman,et al.  A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells , 2012 .

[29]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[30]  C. Ballif,et al.  Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate , 2010 .

[31]  M. Zeman,et al.  Optimal design of periodic surface texture for thin‐film a‐Si:H solar cells , 2010 .

[32]  Bernd Rech,et al.  Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass , 2015 .

[33]  P. D. Veneri,et al.  Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells , 2010 .

[34]  T. Krauss,et al.  Engineering gratings for light trapping in photovoltaics: The supercell concept , 2012 .

[35]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .