A sandwich-like CoNiLDH@rGO@CoNi2S4 electrode enabling high mass loading and high areal capacitance for solid-state supercapacitors

Sandwich-like heterostructures containing graphene interlayers were designed to improve the mass load and areal specific capacitance.

[1]  Junsheng Zhu,et al.  Facile synthesis of novel CoNi2S4/carbon nanofibers composite for high-performance supercapacitor , 2022, Materials Chemistry and Physics.

[2]  M. Sathish,et al.  Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Next‐Generation Supercapacitors: A Review , 2022, Advanced Functional Materials.

[3]  Q. Ling,et al.  Microwave-Assisted Synthesis of Nico-LDH/Graphene Nanoscrolls Composite for Supercapacitor , 2022, SSRN Electronic Journal.

[4]  Jiyang Xie,et al.  Simultaneously high mass-loading and volumetric energy density in Ag2O-intercalated MnO2-based supercapacitor with rapid electron/ion transport channels , 2021 .

[5]  Wei Yang,et al.  Facile self-assembly of sandwich-like MXene/graphene oxide/nickel–manganese layered double hydroxide nanocomposite for high performance supercapacitor , 2021, Journal of Energy Storage.

[6]  Zhifeng Wang,et al.  Flexible Co(OH)2/NiOxHy@Ni hybrid electrodes for high energy density supercapacitors , 2021, Chemical Engineering Journal.

[7]  Qiang Wu,et al.  Boosting supercapacitive performance of flexible carbon via surface engineering. , 2021, Journal of colloid and interface science.

[8]  J. Razal,et al.  Multilayered and hierarchical structured NiCo double hydroxide nanosheets generated on porous MgCo2O4 nanowire arrays for high performance supercapacitors , 2021 .

[9]  Wenting Li,et al.  Hierarchical Porous Heterostructured Co(OH)2/CoSe2 nanoarray: A Controllable Design Electrode for Advanced Asymmetrical Supercapacitors , 2021 .

[10]  Weiqing Yang,et al.  Tailoring carbon nanomaterials via a molecular scissor , 2021 .

[11]  Kai Jiang,et al.  Enhanced faradic activity by construction of p-n junction within reduced graphene oxide@cobalt nickel sulfide@nickle cobalt layered double hydroxide composite electrode for charge storage in hybrid supercapacitor. , 2021, Journal of colloid and interface science.

[12]  Hua Mei,et al.  Fe2O3/N doped rGO anode hybridized with NiCo LDH/Co(OH)2 cathode for battery-like supercapacitor , 2021 .

[13]  Qiming Liu,et al.  A novel fabricated conductive substrate for enhancing the mass loading of NiCoLDH nanosheets for high areal specific capacity in hybrid supercapacitors , 2020 .

[14]  Hui Zhang,et al.  Honeycombed-like nanosheet array composite NiCo2O4/rGO for efficient methanol electrooxidation and supercapacitors , 2020 .

[15]  D. Gao,et al.  ZIF-8 derived ZnWO4 nanocrystals: Calcination temperature induced evolution of composition and microstructures, and their electrochemical performances as anode for lithium-ion batteries , 2020 .

[16]  C. Guan,et al.  Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor , 2020 .

[17]  Hong‐Yan Zeng,et al.  Sulfidation of CoAl-layered double hydroxide on Ni foam for high-performance supercapacitors , 2020 .

[18]  Luhuan Yang,et al.  Construction of nanowall-supported-nanorod nico ldh array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors , 2020 .

[19]  Qiang Wu,et al.  Rational design of cobalt-nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance. , 2020, Journal of colloid and interface science.

[20]  Huanyu Cheng,et al.  Efficient coupling of semiconductors into metallic MnO2@CoMn2O4 heterostructured electrode with boosted charge transfer for high-performance supercapacitors , 2020 .

[21]  Yinling Wang,et al.  CNT/Co3S4@NiCo LDH ternary nanocomposites as battery-type electrode materials for hybrid supercapacitors , 2020 .

[22]  Jinyuan Zhou,et al.  Mesh-like vertical structures enable both high areal capacity and excellent rate capability , 2020 .

[23]  Fangfang Zhu,et al.  Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications , 2020 .

[24]  Yanting Li,et al.  Unique 3D bilayer nanostructure basic cobalt carbonate@NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material , 2019, Ionics.

[25]  Juan Wang,et al.  Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors. , 2019, Journal of colloid and interface science.

[26]  Xuefeng Guo,et al.  Iron oxide encapsulated in nitrogen-doped carbon as high energy anode material for asymmetric supercapacitors , 2019, Journal of Power Sources.

[27]  W. Quan,et al.  Hierarchically structured Co3O4@glucose-modified LDH architectures for high-performance supercapacitors , 2019, Applied Surface Science.

[28]  K. Yuan,et al.  Hierarchical nickel cobalt sulfide nanosheet on MOF-derived carbon nanowall arrays with remarkable supercapacitive performance , 2019, Carbon.

[29]  K. Parida,et al.  Enhanced Photocatalytic Activities of RhB Degradation and H2 Evolution from in Situ Formation of the Electrostatic Heterostructure MoS2/NiFe LDH Nanocomposite through the Z-Scheme Mechanism via p-n Heterojunctions. , 2019, ACS applied materials & interfaces.

[30]  Yong Qin,et al.  Hierarchical CoNi2S4 nanosheet/nanotube array structure on carbon fiber cloth for high-performance hybrid supercapacitors , 2019, Electrochimica Acta.

[31]  Nageh K. Allam,et al.  A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors , 2019, Electrochimica Acta.

[32]  Hongliang Li,et al.  Highly active and porous M3S4 (M=Ni, Co) with enriched electroactive edge sites for hybrid supercapacitor with better power and energy delivery performance , 2018, Electrochimica Acta.

[33]  Xiaohong Zhu,et al.  Tailoring morphology of cobalt–nickel layered double hydroxide via different surfactants for high-performance supercapacitor , 2018, Royal Society Open Science.

[34]  Kai Jiang,et al.  Enhanced cycleability of faradic CoNi2S4 electrode by reduced graphene oxide coating for efficient asymmetric supercapacitor , 2018, Electrochimica Acta.

[35]  Akbar Mohammadi Zardkhoshoui,et al.  All-solid-state, flexible, ultrahigh performance supercapacitors based on the Ni-Al LDH-rGO electrodes , 2018, Journal of Alloys and Compounds.

[36]  Yun Song,et al.  In Situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for High-Performance All-Solid-State Pseudocapacitor. , 2018, ACS nano.

[37]  Longwei Yin,et al.  Molecular-Level Heterostructures Assembled from Titanium Carbide MXene and Ni–Co–Al Layered Double-Hydroxide Nanosheets for All-Solid-State Flexible Asymmetric High-Energy Supercapacitors , 2018 .

[38]  T. Zhai,et al.  Ultrathin and Porous Ni3S2/CoNi2S4 3D‐Network Structure for Superhigh Energy Density Asymmetric Supercapacitors , 2017 .

[39]  Xuan Li,et al.  Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes , 2017, Nano Research.

[40]  Shaohui Li,et al.  Bouquet‐Like NiCo2O4@CoNi2S4 Arrays for High‐Performance Pseudocapacitors , 2017 .

[41]  J. Xiong,et al.  Construction of Hierarchical NiCo2S4@Ni(OH)2 Core-Shell Hybrid Nanosheet Arrays on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors , 2016 .

[42]  H. Alshareef,et al.  One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. , 2014, ACS nano.