Parameter-Dependent Lyapunov Functions and the Discrete-Time Popov Criterion for Robust Analysis and Synthesis

[1]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: II—Discrete-Time Systems , 1960 .

[2]  Ya. Z. Tsypkin,et al.  A Criterion for Absolute Stability of Automatic Pulse Systems with Monotonic Characteristics of the Nonlinear Element , 1964 .

[3]  G. P. Szegö,et al.  ON THE ABSOLUTE STABILITY OF SAMPLED-DATA CONTROL SYSTEMS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Bernstein,et al.  Explicit construction of quadratic lyapunov functions for the small gain, positivity, circle, and popov theorems and their application to robust stability. part II: Discrete-time theory , 1993 .

[5]  Kumpati S. Narendra,et al.  Stability Analysis of Nonlinear and Time-Varying Discrete Systems , 1968 .

[6]  Dragoslav D. Šiljak,et al.  Exponential absolute stability of discrete systems , 1971 .

[7]  D. Siljak Algebraic criteria for positive realness relative to the unit circle , 1973 .

[8]  J. E. Gibson,et al.  On the Asymptotic Stability of a Class of Saturating Sampled-Data Systems , 1964, IEEE Transactions on Applications and Industry.

[9]  J. Pearson,et al.  On the absolute stability of sampled-data systems: The "Indirect control" case , 1964 .

[10]  Brian D. O. Anderson,et al.  Discrete positive-real fu nctions and their applications to system stability , 1969 .

[11]  E. I. Jury,et al.  On the stability of a certain class of nonlinear sampled-data systems , 1964 .