Diffusion in Li₂O studied by non-equilibrium molecular dynamics for 873 < T/K < 1603.

The use of non-equilibrium molecular dynamics facilitates the calculation of the cation diffusion constant of Li2O at temperatures too low to be accessible by other methods. Excellent agreement with experimental diffusion coefficients has been obtained over the temperature range 873 < T/K < 1603. Diffusion below 1200 K was shown to be dominated by a concerted nearest-neighbour hopping process, whereas in the high-temperature superionic region an additional mechanism involving a six-coordinate interstitial cation site in the anti-fluorite structure becomes increasingly dominant. Our model thus accounts for the transition from the superionic regime to the non-superionic regime.

[1]  Alexander L. Shluger,et al.  Migration behavior of lithium ions and tritium in Li2O , 1994 .

[2]  Alexis T. Bell,et al.  Transport diffusivity of methane in silicalite from equilibrium and nonequilibrium simulations , 1993 .

[3]  C. Grey,et al.  Structural chemistry and magnetic properties of La2LiRuO6 , 2003 .

[4]  T. Yanagi,et al.  Self-diffusion coefficient of lithium in lithium oxide , 1979 .

[5]  M. Hayoun,et al.  Complex atomic-diffusion mechanism in ionic superconductors: The case of the lithium-oxide antifluorite , 2005 .

[6]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[7]  Lin,et al.  Defect energetics in oxide materials from first principles. , 1992, Physical review letters.

[8]  Michele Parrinello,et al.  The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations , 1999 .

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[11]  S. Chaplot,et al.  Superionic behavior of lithium oxide Li 2 O : A lattice dynamics and molecular dynamics study , 2004 .

[12]  N. Allan,et al.  Lithium oxide and superionic behaviour - a study using potentials from periodic ab initio calculations , 1998 .

[13]  M. Gillan,et al.  The Energetics of Frenkel Defects in Li2O from First Principles , 1992 .

[14]  Roberto Dovesi,et al.  ON THE ELASTIC PROPERTIES OF LITHIUM, SODIUM AND POTASSIUM OXIDE - AN AB INITIO STUDY , 1991 .

[15]  Binod Kumar,et al.  Space-Charge-Mediated Superionic Transport in Lithium Ion Conducting Glass–Ceramics , 2009 .

[16]  M. Hayoun,et al.  Surface effects on atomic diffusion in a superionic conductor: A molecular dynamics study of lithium oxide , 2013 .

[17]  Y. Duan,et al.  Density functional theory studies of the structural, electronic, and phonon properties of Li 2 O and Li 2 CO 3 : Application to CO 2 capture reaction , 2009 .

[18]  Michael T. Hutchings,et al.  Investigation of thermally induced Li+ ion disorder in Li2O using neutron diffraction , 1991 .

[19]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[20]  M. Hayoun,et al.  Derivation and validation of model potentials for Li2O from density-functional theory , 2001 .

[21]  Harald P. Pfeiffer,et al.  Lithium and tritium diffusion in lithium oxide (Li , 2000 .

[22]  William G. Hoover,et al.  Nonequilibrium molecular dynamics via Gauss's principle of least constraint , 1983 .

[23]  B. Kumar,et al.  Interface-Mediated Electrochemical Effects in Lithium/Polymer-Ceramic Cells (POSTPRINT) , 2001 .

[24]  R. Mittal,et al.  Phonon instability and mechanism of superionic conduction in Li 2 O , 2012 .

[25]  M. Hayoun,et al.  Migration and correlation in highly defective systems: Fast-diffusion in lithium oxide , 2008 .

[26]  Stephen R. Williams,et al.  Ab initio nonequilibrium molecular dynamics in the solid superionic conductor LiBH4. , 2012, Physical review letters.