Characterization of the angiotensin II receptor expressed by the human hepatoma cell line, PLC-PRF-5.

[1]  M. Schambelan,et al.  Characterization of angiotensin II receptor subtypes in rat heart. , 1992, Circulation research.

[2]  P. Timmermans,et al.  Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research. , 1991, Hypertension.

[3]  A. Chiu,et al.  DuP 753 can antagonize the effects of angiotensin II in rat liver. , 1991, Molecular pharmacology.

[4]  B. Fredholm,et al.  Characterization of adenosine A1 receptors in intact DDT1 MF-2 smooth muscle cells. , 1990, Molecular pharmacology.

[5]  M. Macías-Silva,et al.  Angiotensin II stimulates phosphoinositide turnover and phosphorylase through AII-1 receptors in isolated rat hepatocytes. , 1990, Biochemical and biophysical research communications.

[6]  R. Panek,et al.  Subclasses of angiotensin II binding sites and their functional significance. , 1990, Molecular pharmacology.

[7]  R. Speth,et al.  Discrimination of two angiotensin II receptor subtypes with a selective agonist analogue of angiotensin II, p-aminophenylalanine6 angiotensin II. , 1990, Biochemical and biophysical research communications.

[8]  J. R. Monck,et al.  Angiotensin II Effects on the Cytosolic Free Ca2+ Concentration in N1E‐115 Neuroblastoma Cells: Kinetic Properties of the Ca2+ Transient Measured in Single Fura‐2‐Loaded Cells , 1990, Journal of neurochemistry.

[9]  P. Timmermans,et al.  Nonpeptide angiotensin II receptor antagonists. , 1990, American journal of hypertension.

[10]  M. Peach,et al.  The angiotensin II receptor and the actions of angiotensin II. , 1990, Journal of cardiovascular pharmacology.

[11]  S. Whitebread,et al.  Biochemical characterization of two angiotensin II receptor subtypes in the rat. , 1990, Journal of cardiovascular pharmacology.

[12]  A. Ashkenazi,et al.  Functional diversity of muscarinic receptor subtypes in cellular signal transduction and growth. , 1989, Trends in pharmacological sciences.

[13]  P. Timmermans,et al.  Identification of angiotensin II receptor subtypes. , 1989, Biochemical and biophysical research communications.

[14]  J. Duncia,et al.  Discrimination of angiotensin II receptor subtypes by dithiothreitol. , 1989, European journal of pharmacology.

[15]  S. Whitebread,et al.  Preliminary biochemical characterization of two angiotensin II receptor subtypes. , 1989, Biochemical and biophysical research communications.

[16]  D. Anderson,et al.  Different agonist-receptor active conformations for rat brain M1 and M2 muscarinic receptors that are separately coupled to two biochemical effector systems. , 1989, Molecular pharmacology.

[17]  D. Mackay Null method or operational model? , 1989, Trends in pharmacological sciences.

[18]  S. Ball,et al.  Characterization of Dopamine and β‐Adrenergic Receptors Linked to Cyclic AMP Formation in Intact Cells of the Clone D384 Derived from a Human Astrocytoma , 1988, Journal of neurochemistry.

[19]  P. Blackmore,et al.  Characterization of the angiotensin II receptor in primary cultures of rat hepatocytes. Evidence that a single population is coupled to two different responses. , 1988, The Journal of biological chemistry.

[20]  J. Exton Mechanisms of action of calcium‐mobilizing agonists: some variations on a young theme , 1988, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  J. Garcı́a-Sáinz,et al.  Angiotenin II receptors: one type coupled to two signals or receptor subtypes , 1987 .

[22]  M. Vallotton,et al.  The renin-angiotensin system , 1987 .

[23]  C. Lynch,et al.  Effect of islet-activating pertussis toxin on the binding characteristics of Ca2+-mobilizing hormones and on agonist activation of phosphorylase in hepatocytes. , 1986, Molecular pharmacology.

[24]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[25]  S. Gunther Characterization of angiotensin II receptor subtypes in rat liver. , 1984, The Journal of biological chemistry.

[26]  S. Jard,et al.  The liver angiotensin receptor involved in the activation of glycogen phosphorylase. , 1982, The Biochemical journal.

[27]  J. Crane,et al.  The hepatic angiotensin II receptor. II. Effect of guanine nucleotides and interaction with cyclic AMP production. , 1982, The Journal of biological chemistry.

[28]  M. Peach,et al.  The hepatic angiotensin II receptor. I. Characterization of the membrane-binding site and correlation with physiological response in hepatocytes. , 1982, The Journal of biological chemistry.

[29]  D Rodbard,et al.  Ligand: a versatile computerized approach for characterization of ligand-binding systems. , 1980, Analytical biochemistry.

[30]  T. Chan,et al.  Studies on alpha-adrenergic activation of hepatic glucose output. , 1978, The Journal of biological chemistry.

[31]  C. Londos,et al.  A highly sensitive adenylate cyclase assay. , 1974, Analytical biochemistry.

[32]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.

[33]  J. Brown,et al.  Increase of plasma renin-substrate concentration after infusion of angiotensin in the rat. , 1973, Clinical science.

[34]  J. Daly,et al.  A RADIOISOTOPIC METHOD FOR MEASURING THE FORMATION OF ADENOSINE 3′,5′‐CYCLIC MONOPHOSPHATE IN INCUBATED SLICES OF BRAIN , 1969, Journal of neurochemistry.

[35]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.