Conjugate gradient algorithms in the solution of optimization problems for nonlinear elliptic partial differential equations

Several variants of the conjugate gradient algorithm are discussed with emphasis on determining the parameters without performing line searches and on using splitting techniques to accelerate convergence. The splittings used here are related to the nonlinear SSOR algorithm. The behavior of the methods is illustrated on a discretization of a nonlinear elliptic partial differential boundary value problem, the minimal surface equation. A conjugate gradient algorithm with splittings is also developed for constrained minimization with upper and lower bounds on the variables, and the method is applied to the obstacle problem for the minimal surface equation.ZusammenfassungWir besprechen mehrere Varianten des konjugierten Gradienten-Algorithmus unter Hervorhebung der Parameterbestimmung ohne Minimierung entlang von Linien und der Konvergenzbeschleunigung durch Zerlegung. Die hier verwendeten Zerlegungen sind dem nichtlinearen SSOR-Algorithmus verwandt. Das Verhalten der Methoden wird illustriert an der Diskretisierung eines nichtlinearen elliptischen partiellen Randwertproblems, nämlich der Minimalflächen-Gleichung. Wir entwickeln auch einen konjugierten Gradienten-Algorithmus mit Zerlegungen für Minimierung mit von oben und unten beschränkten Variabeln; ferner zeigen wir eine Anwendung der Methode auf das Hindernisproblem bei der Minimalflächen-Gleichung.

[1]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[2]  E. Polak,et al.  Efficient Implementations of the Polak–Ribière Conjugate Gradient Algorithm , 1972 .

[3]  Gene H. Golub,et al.  Numerical solution of nonlinear elliptic partial differential equations by a generalized conjugate gradient method , 1976, Computing.

[4]  Duan Li,et al.  On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.

[5]  K. Ritter,et al.  Alternative proofs of the convergence properties of the conjugate-gradient method , 1974 .

[6]  A. I. Cohen Rate of convergence of several conjugate gradient algorithms. , 1972 .

[7]  O. Axelsson Solution of linear systems of equations: Iterative methods , 1977 .

[8]  J. Douglas A Method of Numerical Solution of the Problem of Plateau , .

[9]  P. Concus Numerical solution of the minimal surface equation , 1967 .

[10]  L. Dixon Conjugate Gradient Algorithms: Quadratic Termination without Linear Searches , 1975 .

[11]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[12]  J. Daniel The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .

[13]  H. H. Wang The Application of the Symmetric SOR and the Symmetric SIP Methods for the Numerical Solution of the Neutron Diffusion Equation , 1978 .

[14]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[15]  S. Schechter,et al.  Relaxation Methods for Convex Problems , 1968 .

[16]  D. O’Leary A generalized conjugate gradient algorithm for solving a class of quadratic programming problems , 1977 .

[17]  D. Bertsekas Partial conjugate gradient methods for a class of optimal control problems , 1974 .

[18]  Melanie L. Lenard Convergence conditions for restarted conjugate gradient methods with inaccurate line searches , 1976, Math. Program..

[19]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[20]  L. Nazareth A conjugate direction algorithm without line searches , 1977 .

[21]  J. Daniel,et al.  A conjugate gradient approach to nonlinear elliptic boundary value problems in irregular regions , 1974 .

[22]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[23]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[24]  U. Eckhardt On an optimization problem related to minimal surfaces with obstacles , 1975 .

[25]  Paul Concus,et al.  Numerical solution of the minimal surface equation by block nonlinear successive overrelaxation , 1968, IFIP Congress.

[26]  Jim Douglas,et al.  Preconditioned Conjugate Gradient Iteration Applied to Galerkin Methods for a Mildly Nonlinear Dirichlet Problem , 1976 .

[27]  Gene H. Golub,et al.  A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations , 2007, Milestones in Matrix Computation.

[28]  J. Reid Large Sparse Sets of Linear Equations , 1973 .